Do you want to publish a course? Click here

Reducible Fermi surface for multi-layer quantum graphs including stacked graphene

77   0   0.0 ( 0 )
 Added by Stephen Shipman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct two types of multi-layer quantum graphs (Schrodinger operators on metric graphs) for which the dispersion function of wave vector and energy is proved to be a polynomial in the dispersion function of the single layer. This leads to the reducibility of the algebraic Fermi surface, at any energy, into several components. Each component contributes a set of bands to the spectrum of the graph operator. When the layers are graphene, AA-, AB-, and ABC-stacking are allowed within the same multi-layer structure. Conical singularities (Dirac cones) characteristic of single-layer graphene break when multiple layers are coupled, except for special AA-stacking. One of the tools we introduce is a surgery-type calculus for obtaining the dispersion function for a periodic quantum graph by gluing two graphs together.



rate research

Read More

99 - Stephen P. Shipman 2017
This work constructs a class of non-symmetric periodic Schrodinger operators on metric graphs (quantum graphs) whose Fermi, or Floquet, surface is reducible. The Floquet surface at an energy level is an algebraic set that describes all complex wave vectors admissible by the periodic operator at the given energy. The graphs in this study are obtained by coupling two identical copies of a periodic quantum graph by edges to form a bilayer graph. Reducibility of the Floquet surface for all energies ensues when the coupling edges have potentials belonging to the same asymmetry class. The notion of asymmetry class is defined in this article through the introduction of an entire spectral A-function $a(lambda)$ associated with a potential--two potentials belong to the same asymmetry class if their A-functions are identical. Symmetric potentials correspond to $a(lambda)equiv0$. If the potentials of the connecting edges belong to different asymmetry classes, then typically the Floquet surface is not reducible. An exception occurs when two copies of certain bipartite graphs are coupled; the Floquet surface in this case is always reducible. This includes AA-stacked bilayer graphene.
We give an estimate of the quantum variance for $d$-regular graphs quantised with boundary scattering matrices that prohibit back-scattering. For families of graphs that are expanders, with few short cycles, our estimate leads to quantum ergodicity for these families of graphs. Our proof is based on a uniform control of an associated random walk on the bonds of the graph. We show that recent constructions of Ramanujan graphs, and asymptotically almost surely, random $d$-regular graphs, satisfy the necessary conditions to conclude that quantum ergodicity holds.
214 - Wei Li , Stephen P. Shipman 2019
We prove that the Fermi surface of a connected doubly periodic self-adjoint discrete graph operator is irreducible at all but finitely many energies provided that the graph (1) can be drawn in the plane without crossing edges (2) has positive coupling coefficients (3) has two vertices per period. If positive is relaxed to complex, the only cases of reducible Fermi surface occur for the graph of the tetrakis square tiling, and these can be explicitly parameterized when the coupling coefficients are real. The irreducibility result applies to weighted graph Laplacians with positive weights.
We prove quantum ergodicity for a family of graphs that are obtained from ergodic one-dimensional maps of an interval using a procedure introduced by Pakonski et al (J. Phys. A, v. 34, 9303-9317 (2001)). As observables we take the L^2 functions on the interval. The proof is based on the periodic orbit expansion of a majorant of the quantum variance. Specifically, given a one-dimensional, Lebesgue-measure-preserving map of an interval, we consider an increasingly refined sequence of partitions of the interval. To this sequence we associate a sequence of graphs, whose directed edges correspond to elements of the partitions and on which the classical dynamics approximates the Perron-Frobenius operator corresponding to the map. We show that, except possibly for subsequences of density 0, the eigenstates of the quantum graphs equidistribute in the limit of large graphs. For a smaller class of observables we also show that the Egorov property, a correspondence between classical and quantum evolution in the semiclassical limit, holds for the quantum graphs in question.
It has been suggested that the distribution of the suitably normalized number of zeros of Laplacian eigenfunctions contains information about the geometry of the underlying domain. We study this distribution (more precisely, the distribution of the nodal surplus) for Laplacian eigenfunctions of a metric graph. The existence of the distribution is established, along with its symmetry. One consequence of the symmetry is that the graphs first Betti number can be recovered as twice the average nodal surplus of its eigenfunctions. Furthermore, for graphs with disjoint cycles it is proven that the distribution has a universal form --- it is binomial over the allowed range of values of the surplus. To prove the latter result, we introduce the notion of a local nodal surplus and study its symmetry and dependence properties, establishing that the local nodal surpluses of disjoint cycles behave like independent Bernoulli variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا