No Arabic abstract
This work constructs a class of non-symmetric periodic Schrodinger operators on metric graphs (quantum graphs) whose Fermi, or Floquet, surface is reducible. The Floquet surface at an energy level is an algebraic set that describes all complex wave vectors admissible by the periodic operator at the given energy. The graphs in this study are obtained by coupling two identical copies of a periodic quantum graph by edges to form a bilayer graph. Reducibility of the Floquet surface for all energies ensues when the coupling edges have potentials belonging to the same asymmetry class. The notion of asymmetry class is defined in this article through the introduction of an entire spectral A-function $a(lambda)$ associated with a potential--two potentials belong to the same asymmetry class if their A-functions are identical. Symmetric potentials correspond to $a(lambda)equiv0$. If the potentials of the connecting edges belong to different asymmetry classes, then typically the Floquet surface is not reducible. An exception occurs when two copies of certain bipartite graphs are coupled; the Floquet surface in this case is always reducible. This includes AA-stacked bilayer graphene.
We construct two types of multi-layer quantum graphs (Schrodinger operators on metric graphs) for which the dispersion function of wave vector and energy is proved to be a polynomial in the dispersion function of the single layer. This leads to the reducibility of the algebraic Fermi surface, at any energy, into several components. Each component contributes a set of bands to the spectrum of the graph operator. When the layers are graphene, AA-, AB-, and ABC-stacking are allowed within the same multi-layer structure. Conical singularities (Dirac cones) characteristic of single-layer graphene break when multiple layers are coupled, except for special AA-stacking. One of the tools we introduce is a surgery-type calculus for obtaining the dispersion function for a periodic quantum graph by gluing two graphs together.
We prove that the Fermi surface of a connected doubly periodic self-adjoint discrete graph operator is irreducible at all but finitely many energies provided that the graph (1) can be drawn in the plane without crossing edges (2) has positive coupling coefficients (3) has two vertices per period. If positive is relaxed to complex, the only cases of reducible Fermi surface occur for the graph of the tetrakis square tiling, and these can be explicitly parameterized when the coupling coefficients are real. The irreducibility result applies to weighted graph Laplacians with positive weights.
In the contest of open quantum systems, we study a class of Kraus operators whose definition relies on the defining representation of the symmetric groups. We analyze the induced orbits as well as the limit set and the degenerate cases.
The S-matrices corresponding to PT-symmetric rho-perturbed operators are defined and calculated by means of an approach based on an operator-theoretical interpretation of the Lax-Phillips scattering theory.
Generalized PT-symmetric operators acting an a Hilbert space $mathfrak{H}$ are defined and investigated. The case of PT-symmetric extensions of a symmetric operator $S$ is investigated in detail. The possible application of the Lax-Phillips scattering methods to the investigation of PT-symmetric operators is illustrated by considering the case of 0-perturbed operators.