Do you want to publish a course? Click here

The First Shared Task on Discourse Representation Structure Parsing

89   0   0.0 ( 0 )
 Added by Lasha Abzianidze
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The paper presents the IWCS 2019 shared task on semantic parsing where the goal is to produce Discourse Representation Structures (DRSs) for English sentences. DRSs originate from Discourse Representation Theory and represent scoped meaning representations that capture the semantics of negation, modals, quantification, and presupposition triggers. Additionally, concepts and event-participants in DRSs are described with WordNet synsets and the thematic roles from VerbNet. To measure similarity between two DRSs, they are represented in a clausal form, i.e. as a set of tuples. Participant systems were expected to produce DRSs in this clausal form. Taking into account the rich lexical information, explicit scope marking, a high number of shared variables among clauses, and highly-constrained format of valid DRSs, all these makes the DRS parsing a challenging NLP task. The results of the shared task displayed improvements over the existing state-of-the-art parser.



rate research

Read More

How meaning is represented in the brain is still one of the big open questions in neuroscience. Does a word (e.g., bird) always have the same representation, or does the task under which the word is processed alter its representation (answering can you eat it? versus can it fly?)? The brain activity of subjects who read the same word while performing different semantic tasks has been shown to differ across tasks. However, it is still not understood how the task itself contributes to this difference. In the current work, we study Magnetoencephalography (MEG) brain recordings of participants tasked with answering questions about concrete nouns. We investigate the effect of the task (i.e. the question being asked) on the processing of the concrete noun by predicting the millisecond-resolution MEG recordings as a function of both the semantics of the noun and the task. Using this approach, we test several hypotheses about the task-stimulus interactions by comparing the zero-shot predictions made by these hypotheses for novel tasks and nouns not seen during training. We find that incorporating the task semantics significantly improves the prediction of MEG recordings, across participants. The improvement occurs 475-550ms after the participants first see the word, which corresponds to what is considered to be the ending time of semantic processing for a word. These results suggest that only the end of semantic processing of a word is task-dependent, and pose a challenge for future research to formulate new hypotheses for earlier task effects as a function of the task and stimuli.
Being able to parse code-switched (CS) utterances, such as Spanish+English or Hindi+English, is essential to democratize task-oriented semantic parsing systems for certain locales. In this work, we focus on Spanglish (Spanish+English) and release a dataset, CSTOP, containing 5800 CS utterances alongside their semantic parses. We examine the CS generalizability of various Cross-lingual (XL) models and exhibit the advantage of pre-trained XL language models when data for only one language is present. As such, we focus on improving the pre-trained models for the case when only English corpus alongside either zero or a few CS training instances are available. We propose two data augmentation methods for the zero-shot and the few-shot settings: fine-tune using translate-and-align and augment using a generation model followed by match-and-filter. Combining the few-shot setting with the above improvements decreases the initial 30-point accuracy gap between the zero-shot and the full-data settings by two thirds.
Semantic parsing using hierarchical representations has recently been proposed for task oriented dialog with promising results [Gupta et al 2018]. In this paper, we present three different improvements to the model: contextualized embeddings, ensembling, and pairwise re-ranking based on a language model. We taxonomize the errors possible for the hierarchical representation, such as wrong top intent, missing spans or split spans, and show that the three approaches correct different kinds of errors. The best model combines the three techniques and gives 6.4% better exact match accuracy than the state-of-the-art, with an error reduction of 33%, resulting in a new state-of-the-art result on the Task Oriented Parsing (TOP) dataset.
Machine Reading Comprehension (MRC) aims to extract answers to questions given a passage. It has been widely studied recently, especially in open domains. However, few efforts have been made on closed-domain MRC, mainly due to the lack of large-scale training data. In this paper, we introduce a multi-target MRC task for the medical domain, whose goal is to predict answers to medical questions and the corresponding support sentences from medical information sources simultaneously, in order to ensure the high reliability of medical knowledge serving. A high-quality dataset is manually constructed for the purpose, named Multi-task Chinese Medical MRC dataset (CMedMRC), with detailed analysis conducted. We further propose the Chinese medical BERT model for the task (CMedBERT), which fuses medical knowledge into pre-trained language models by the dynamic fusion mechanism of heterogeneous features and the multi-task learning strategy. Experiments show that CMedBERT consistently outperforms strong baselines by fusing context-aware and knowledge-aware token representations.
Expressive text encoders such as RNNs and Transformer Networks have been at the center of NLP models in recent work. Most of the effort has focused on sentence-level tasks, capturing the dependencies between words in a single sentence, or pairs of sentences. However, certain tasks, such as argumentation mining, require accounting for longer texts and complicated structural dependencies between them. Deep structured prediction is a general framework to combine the complementary strengths of expressive neural encoders and structured inference for highly structured domains. Nevertheless, when the need arises to go beyond sentences, most work relies on combining the output scores of independently trained classifiers. One of the main reasons for this is that constrained inference comes at a high computational cost. In this paper, we explore the use of randomized inference to alleviate this concern and show that we can efficiently leverage deep structured prediction and expressive neural encoders for a set of tasks involving complicated argumentative structures.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا