Do you want to publish a course? Click here

High-contrast imaging of 180{deg} ferroelectric domains by optical microscopy using ferroelectric liquid crystals

122   0   0.0 ( 0 )
 Added by Guillaume Nataf
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ferroelectric liquid crystals (FLCs) couple the direction of their spontaneous electric polarization to the direction of tilt of their optic axis. Consequently, reversal of the electric polarization by an electric field gives rise to an immediate and lasting optical response when an appropriately aligned FLC is observed between crossed polarizers, with one field direction yielding a dark image, and the opposite direction yielding a bright image. Here this peculiar electro-optic response is used to image, with high optical contrast, 180{deg} ferroelectric domains in a crystalline substrate of magnesium-doped lithium niobate. The lithium niobate substrate contains a few domains with upwards electric polarization surrounded by regions with downward electric polarization. In contrast to a reference non-chiral liquid crystal that is unable to show ferroelectric behavior due to its high symmetry, the FLC, which is used as a thin film confined between the lithium niobate substrate and an inert aligning substrate, reveals ferroelectric domains as well as their boundaries, with strong black and white contrast. The results show that FLCs can be used for non-destructive read-out of domains in underlying ferroelectrics, with potential applications in e.g. photonic devices and non-volatile ferroelectric memories.



rate research

Read More

98 - T. Jungk , A. Hoffmann , 2008
We present a full analysis of the contrast mechanisms for the detection of ferroelectric domains on all faces of bulk single crystals using scanning force microscopy exemplified on hexagonally poled lithium niobate. The domain contrast can be attributed to three different mechanisms: i) the thickness change of the sample due to an out-of-plane piezoelectric response (standard piezoresponse force microscopy), ii) the lateral displacement of the sample surface due to an in-plane piezoresponse, and iii) the electrostatic tip-sample interaction at the domain boundaries caused by surface charges on the crystallographic y- and z-faces. A careful analysis of the movement of the cantilever with respect to its orientation relative to the crystallographic axes of the sample allows a clear attribution of the observed domain contrast to the driving forces respectively.
352 - Scott R. Johnston 2017
Surface Acoustic Wave (SAW) resonances were imaged within a closed domain in the ferroelectric LiTaO$_3$ via scanning Microwave Impedance Microscopy (MIM). The MIM probe is used for both SAW generation and measurement, allowing contact-less measurement within a mesoscopic structure. Measurements taken over a range of microwave frequencies are consistent with a constant acoustic velocity, demonstrating the acoustic nature of the measurement.
Domain walls are functionally different from the domains they separate, but little is known about their mechanical properties. Using scanning probe microscopy, we have measured the mechanical response of ferroelectric 180o domain walls and observed that, despite separating domains that are mechanically identical (non-ferroelastic), the walls are mechanically distinct -- softer -- compared to the domains. This effect has been observed in different ferroelectric materials (LiNbO3, BaTiO3, PbTiO3) and with different morphologies (from single crystals to thin films) so it appears to be universal. We propose a theoretical framework that explains the domain wall softening and justifies that the effect should be common to all ferroelectrics.
143 - J. Schaab , I. P. Krug , F. Nickel 2014
High-resolution X-ray photoemission electron microscopy (X-PEEM) is a well-established method for imaging ferroelectric domain structures. Here, we expand the scope of application of X-PEEM and demonstrate its capability for imaging and investigating domain walls in ferroelectrics with high-spatial resolution. Using ErMnO3 as test system, we show that ferroelectric domain walls can be visualized based on photo-induced charging effects and local variations in their electronic conductance can be mapped by analyzing the energy distribution of photoelectrons. Our results open the door for non-destructive, contract-free, and element-specific studies of the electronic and chemical structure at domain walls in ferroelectrics.
142 - J. Guyonnet , H. Bea , F. Guy 2009
In studies using piezoresponse force microscopy, we observe a non-zero lateral piezoresponse at 180$^circ$ domain walls in out-of-plane polarized, c-axis-oriented tetragonal ferroelectric Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$ epitaxial thin films. We attribute these observations to a shear strain effect linked to the sign change of the $d_{33}$ piezoelectric coefficient through the domain wall, in agreement with theoretical predictions. We show that in monoclinically distorted tetragonal BiFeO$_3$ films, this effect is superimposed on the lateral piezoresponse due to actual in-plane polarization, and has to be taken into account in order to correctly interpret the ferroelectric domain configuration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا