Do you want to publish a course? Click here

L^2-Betti numbers arising from the lamplighter group

136   0   0.0 ( 0 )
 Added by Joan Claramunt
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We apply a construction developed in a previous paper by the authors in order to obtain a formula which enables us to compute $ell^2$-Betti numbers coming from a family of group algebras representable as crossed product algebras. As an application, we obtain a whole family of irrational $ell^2$-Betti numbers arising from the lamplighter group algebra $K[mathbb{Z}_2 wr mathbb{Z}]$, being $K$ a subfield of the complex numbers closed under complex conjugation. This procedure is constructive, in the sense that one has an explicit description of the elements realizing such irrational numbers. This extends the work made by Grabowski, who first computed irrational $ell^2$-Betti numbers from the algebras $mathbb{Q}[mathbb{Z}_n wr mathbb{Z}]$, where $n geq 2$ is a natural number. We also apply the techniques developed to the (generalized) odometer algebra $mathcal{O}(overline{n})$, where $overline{n}$ is a supernatural number. We compute its $*$-regular closure, and this allows us to fully characterize the set of $ell^2$-Betti numbers arising from $mathcal{O}(overline{n})$.



rate research

Read More

62 - Bingbing Liang 2017
We investigate dynamical analogues of the $L^2$-Betti numbers for modules over integral group ring of a discrete sofic group. In particular, we show that the $L^2$-Betti numbers exactly measure the failure of addition formula for dynamical invariants.
We show that the inert subgroups of the lamplighter group fall into exactly five commensurability classes. The result is then connected with the theory of totally disconnected locally compact groups and with algebraic entropy.
We introduce a new class of monomial ideals which we call symmetric shifted ideals. Symmetric shifted ideals are fixed by the natural action of the symmetric group and, within the class of monomial ideals fixed by this action, they can be considered as an analogue of stable monomial ideals within the class of monomial ideals. We show that a symmetric shifted ideal has linear quotients and compute its (equivariant) graded Betti numbers. As an application of this result, we obtain several consequences for graded Betti numbers of symbolic powers of defining ideals of star configurations.
107 - Martha Precup 2016
Recently Brosnan and Chow have proven a conjecture of Shareshian and Wachs describing a representation of the symmetric group on the cohomology of regular semisimple Hessenberg varieties for $GL_n(mathbb{C})$. A key component of their argument is that the Betti numbers of regular Hessenberg varieties for $GL_n(mathbb{C})$ are palindromic. In this paper, we extend this result to all reductive algebraic groups, proving that the Betti numbers of regular Hessenberg varieties are palindromic.
In this paper we study virtual rational Betti numbers of a nilpotent-by-abelian group $G$, where the abelianization $N/N$ of its nilpotent part $N$ satisfies certain tameness property. More precisely, we prove that if $N/N$ is $2(c(n-1)-1)$-tame as a $G/N$-module, $c$ the nilpotency class of $N$, then $mathrm{vb}_j(G):=sup_{Minmathcal{A}_G}dim_mathbb{Q} H_j(M,mathbb{Q})$ is finite for all $0leq jleq n$, where $mathcal{A}_G$ is the set of all finite index subgroups of $G$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا