No Arabic abstract
Quantum information processing often requires the preparation of arbitrary quantum states, such as all the states on the Bloch sphere for two-level systems. While numerical optimization can prepare individual target states, they lack the ability to find general solutions that work for a large class of states in more complicated quantum systems. Here, we demonstrate global quantum control by preparing a continuous set of states with deep reinforcement learning. The protocols are represented using neural networks, which automatically groups the protocols into similar types, which could be useful for finding classes of protocols and extracting physical insights. As application, we generate arbitrary superposition states for the electron spin in complex multi-level nitrogen-vacancy centers, revealing classes of protocols characterized by specific preparation timescales. Our method could help improve control of near-term quantum computers, quantum sensing devices and quantum simulations.
Recent advances in quantum computing have drawn considerable attention to building realistic application for and using quantum computers. However, designing a suitable quantum circuit architecture requires expert knowledge. For example, it is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible. We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge. In the proposed framework, the DRL agent can only access the Pauli-$X$, $Y$, $Z$ expectation values and a predefined set of quantum operations for learning the target quantum state, and is optimized by the advantage actor-critic (A2C) and proximal policy optimization (PPO) algorithms. We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent. The design of our framework is rather general and can be employed with other DRL architectures or optimization methods to study gate synthesis and compilation for many quantum states.
Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired and known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. We quantify security in our implementation using the concept of the one-time pad. Our results represent a significant step towards microwave quantum networks between superconducting circuits.
The fast and faithful preparation of the ground state of quantum systems is a challenging task but crucial for several applications in the realm of quantum-based technologies. Decoherence poses a limit to the maximum time-window allowed to an experiment to faithfully achieve such desired states. This is of particular significance in critical systems, where the vanishing energy gap challenges an adiabatic ground state preparation. We show that a bang-bang protocol, consisting of a time evolution under two different values of an externally tunable parameter, allows for a high-fidelity ground state preparation in evolution times no longer than those required by the application of standard optimal control techniques, such as the chopped-random basis quantum optimization. In addition, owing to their reduced number of variables, such bang-bang protocols are very well suited to optimization purposes, reducing the increasing computational cost of other optimal control protocols. We benchmark the performance of such approach through two paradigmatic models, namely the Landau-Zener and the Lipkin-Meshkov-Glick model. Remarkably, the critical ground state of the latter model can be prepared with a high fidelity in a total evolution time that scales slower than the inverse of the vanishing energy gap.
Identifying phases of matter is a complicated process, especially in quantum theory, where the complexity of the ground state appears to rise exponentially with system size. Traditionally, physicists have been responsible for identifying suitable order parameters for the identification of the various phases. The entanglement of quantum many-body systems exhibits rich structures and can be determined over the phase diagram. The intriguing question of the relationship between entanglement and quantum phase transition has recently been addressed. As a method that works directly on the entanglement structure, disentanglement can provide factual information on the entanglement structure. In this work, we follow a radically different approach to identifying quantum phases: we utilize reinforcement learning (RL) approaches to develop an efficient variational quantum circuit that disentangles the ground-state of Ising spin chain systems. We show that the specified quantum circuit structure of the tested models correlates to a phase transition in the behaviour of the entanglement. We show a similar universal quantum circuit structure for ground states in the same phase to reduce entanglement entropy. This study sheds light on characterizing quantum phases with the types of entanglement structures of the ground states.
Rubiks Cube is one of the most famous combinatorial puzzles involving nearly $4.3 times 10^{19}$ possible configurations. Its mathematical description is expressed by the Rubiks group, whose elements define how its layers rotate. We develop a unitary representation of such group and a quantum formalism to describe the Cube from its geometrical constraints. Cubies are describedby single particle states which turn out to behave like bosons for corners and fermions for edges, respectively. When in its solved configuration, the Cube, as a geometrical object, shows symmetrieswhich are broken when driven away from this configuration. For each of such symmetries, we build a Hamiltonian operator. When a Hamiltonian lies in its ground state, the respective symmetry of the Cube is preserved. When all such symmetries are preserved, the configuration of the Cube matches the solution of the game. To reach the ground state of all the Hamiltonian operators, we make use of a Deep Reinforcement Learning algorithm based on a Hamiltonian reward. The Cube is solved in four phases, all based on a respective Hamiltonian reward based on its spectrum, inspired by the Ising model. Embedding combinatorial problems into the quantum mechanics formalism suggests new possible algorithms and future implementations on quantum hardware.