No Arabic abstract
The description of the collective magnetorheological effect induced by magnetic field in magnetoactive elastomers is proposed. The condition of consistency is used between magnetic and mechanic momenta of forces exerted on magnetically uniaxial ferromagnetic particles in elastomer at their magnetization. The study shows that even in the case of small concentration of particles, the value of magnetically-induced shear can be anomalously large, reaching up to tens of percent. The deformation of magnetoactive elastomer can evolve critically, as a second-order phase transition, if magnetic field is aligned along the easy axis of particles.
Soft elastic composite materials can serve as actuators when they transform changes in external fields into mechanical deformation. Here, we address the corresponding deformational behavior of magnetic gels and elastomers, consisting of magnetizable colloidal particles in a soft polymeric matrix and exposed to external magnetic fields. Since many practical realizations of such materials involve particulate inclusions of polydisperse size distributions, we concentrate on the effect that mixed particle sizes have on the overall deformational response. To perform a systematic study, our focus is on binary size distributions. We systematically vary the fraction of larger particles relative to smaller ones and characterize the resulting magnetostrictive behavior. The consequences for systems of various different spatial particle arrangements and different degrees of compressibility of the elastic matrix are evaluated. In parts, we observe a qualitative change in the overall response for selected systems of mixed particle sizes. Specifically, overall changes in volume and relative elongations or contractions in response to an induced magnetization can be reversed into the opposite types of behavior. Our results should apply to the characteristics of other soft elastic composite materials like electrorheological gels and elastomers when exposed to external electric fields as well. Overall, we hope to stimulate the further investigation on the purposeful use of mixed particle sizes as a means to design tailored requested material behavior.
A minimal system of equations is introduced and applied to study the drift motion of ferromagnetic particles suspended in a viscous fluid and subjected to a time-periodic driving force and a nonuniformly rotating magnetic field. It is demonstrated that the synchronized translational and rotational oscillations of these particles are accompanied by their drift in a preferred direction, which occurs under the action of the Magnus force. We calculate both analytically and numerically the drift velocity of particles characterized by single-domain cores and nonmagnetic shells and show that there are two types of drift, unidirectional and bidirectional, which can be realized in suspensions composed of particles with different core-shell ratios. The possibility of using the effect of bidirectional drift for the separation of core-shell particles in suspensions is also discussed.
The present article provides an overview of the recent progress in the direct force measurements between individual pairs of colloidal particles in aqueous salt solutions. Results obtained by two different techniques are being highlighted, namely with the atomic force microscope (AFM) and optical tweezers. One finds that the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) represents an accurate description of the force profiles even in the presence of multivalent ions, typically down to distances of few nanometers. However, the corresponding Hamaker constants and diffuse layer potentials must be extracted from the force profiles. At low salt concentrations, double layer forces remain repulsive and may become long ranged. At short distances, additional short range non-DLVO interactions may become important. Such an interaction is particularly relevant in the presence of multivalent counterions.
The shape of liquid crystalline elastomers (LCEs) with spatial variation in the director orientation can be transformed by exposure to a stimulus. Here, informed by previously reported analytical treatments, we prepare complex spiral patterns imprinted into LCEs and quantify the resulting shape transformation. Quantification of the stimuli-induced shapes reveals good agreement between predicted and experimentally observed curvatures. We conclude this communication by reporting a design strategy to allow LCE films to be anchored at their external boundaries onto rigid substrates without incurring internal, mechanical-mismatch stresses upon actuation, a critical advance to the realization of shape transformation of LCEs in practical device applications.
We report an unexpected behavior in wetting dynamics on soft silicone substrates: the dynamics of aqueous droplets deposited on vertical plates of such elastomers exhibits two successive speed regimes. This macroscopic observation is found to be closely related to microscopic phenomena occurring at the scale of the polymer network: we show that uncrosslinked chains found in most widely used commercial silicone elastomers are responsible for this surprising behavior. A direct visualization of the uncrosslinked oligomers collected by water droplets is performed, evidencing that a capillarity-induced phase separation occurs: uncrosslinked oligomers are extracted from the silicone elastomer network by the water-glycerol mixture droplet. The sharp speed change is shown to coincide with an abrupt transition in surface tension of the droplets, when a critical surface concentration in uncrosslinked oligomer chains is reached. We infer that a droplet shifts to a second regime with a faster speed when it is completely covered with a homogeneous oil film.