We study deformation quantization of nonassociative algebras whose associator satisfies some symmetric relations. This study is expanded to a larger class of nonassociative algebras includind Leibniz algebras. We apply also to this class the rule of polarization-depolarization.
It is known that there are Lie algebras with non-semigroup gradings, i.e. such that the binary operation on the grading set is not associative. We provide a similar example in the class of associative algebras.
Algebraic scheme for constructing deformations of structure constants for associative algebras generated by a deformation driving algebras (DDAs) is discussed. An ideal of left divisors of zero plays a central role in this construction. Deformations of associative three-dimensional algebras with the DDA being a three-dimensional Lie algebra and their connection with integrable systems are studied.
We classify, up to isomorphism, the 2-dimensional algebras over a field K. We focuse also on the case of characteristic 2, identifying the matrices of GL(2,F_2) with the elements of the symmetric group S_3. The classification is then given by the study of the orbits of this group on a 3-dimensional plane, viewed as a Fano plane. As applications, we establish classifications of Jordan algebras, algebras of Lie type or Hom-Associative algebras.
In 1992, following earlier conjectures of Lichtman and Makar-Limanov, Klein conjectured that a noncommutative domain must contain a free, multiplicative, noncyclic subsemigroup. He verified the conjecture when the center is uncountable. In this note we consider the existence (or not) of free subsemigroups in associative $k$-algebras $R$, where $k$ is a field not algebraic over a finite subfield. We show that $R$ contains a free noncyclic subsemigroup in the following cases: (1) $R$ satisfies a polynomial identity and is noncommutative modulo its prime radical. (2) $R$ has at least one nonartinian primitive subquotient. (3) $k$ is uncountable and $R$ is noncommutative modulo its Jacobson radical. In particular, (1) and (2) verify Kleins conjecture for numerous well known classes of domains, over countable fields, not covered in the prior literature.