Do you want to publish a course? Click here

Nonlinear losses in magnon transport due to four-magnon scattering

151   0   0.0 ( 0 )
 Added by Katrin Schultheiss
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the impact of nonlinear four-magnon scattering on magnon transport in microstructured Co25Fe75 waveguides with low magnetic damping. We determine the magnon propagation length with microfocused Brillouin light scattering over a broad range of excitation powers and detect a decrease of the attenuation length at high powers. This is consistent with the onset of nonlinear four-magnon scattering. Hence, it is critical to stay in the linear regime, when deriving damping parameters from the magnon propagation length. Otherwise, the intrinsic nonlinearity of magnetization dynamics may lead to a misinterpretation of magnon propagation lengths and, thus, to incorrect values of the magnetic damping of the system.



rate research

Read More

Femtosecond laser pulses can induce ultrafast demagnetization as well as generate bursts of hot electron spin currents. In trilayer spin valves consisting of two metallic ferromagnetic layers separated by a nonmagnetic one, hot electron spin currents excited by an ultrashort laser pulse propagate from the first ferromagnetic layer through the spacer reaching the second magnetic layer. When the magnetizations of the two magnetic layers are noncollinear, this spin current exerts a torque on magnetic moments in the second ferromagnet. Since this torque is acting only within the sub-ps timescale, it excites coherent high-frequency magnons as recently demonstrated in experiments. Here, we calculate the temporal shape of the hot electron spin currents using the superdiffusive transport model and simulate the response of the magnetic system to the resulting ultrashort spin-transfer torque pulse by means of atomistic spin-dynamics simulations. Our results confirm that the acting spin-current pulse is short enough to excite magnons with frequencies beyond 1 THz, a frequency range out of reach for current induced spin-transfer torques. We demonstrate the formation of thickness dependent standing spin waves during the first picoseconds after laser excitation. In addition, we vary the penetration depth of the spin-transfer torque to reveal its influence on the excited magnons. Our simulations clearly show a suppression effect of magnons with short wavelengths already for penetration depths in the range of 1 nm confirming experimental findings reporting penetration depths below $2, {rm nm}$.
The ultrastrong coupling of (quasi-)particles has gained considerable attention due to its application potential and richness of the underlying physics. Coupling phenomena arising due to electromagnetic interactions are well explored. In magnetically ordered systems, the quantum-mechanical exchange-interaction should furthermore enable a fundamentally different coupling mechanism. Here, we report the observation of ultrastrong intralayer exchange-enhanced magnon-magnon coupling in a compensated ferrimagnet. We experimentally study the spin dynamics in a gadolinium iron garnet single crystal using broadband ferromagnetic resonance. Close to the ferrimagnetic compensation temperature, we observe ultrastrong coupling of clockwise and anticlockwise magnon modes. The magnon-magnon coupling strength reaches more than 30% of the mode frequency and can be tuned by varying the direction of the external magnetic field. We theoretically explain the observed phenomenon in terms of an exchange-enhanced mode-coupling mediated by a weak cubic anisotropy.
141 - Wenyu Xing , Luyi Qiu , Xirui Wang 2019
The recent emergence of 2D van der Waals magnets down to atomic layer thickness provides an exciting platform for exploring quantum magnetism and spintronics applications. The van der Waals nature stabilizes the long-range ferromagnetic order as a result of magnetic anisotropy. Furthermore, giant tunneling magnetoresistance and electrical control of magnetism have been reported. However, the potential of 2D van der Waals magnets for magnonics, magnon-based spintronics, has not been explored yet. Here, we report the experimental observation of long-distance magnon transport in quasi-twodimensional van der Waals antiferromagnet MnPS3, which demonstrates the 2D magnets as promising material candidates for magnonics. As the 2D MnPS3 thickness decreases, a shorter magnon diffusion length is observed, which could be attributed to the surface-impurity-induced magnon scattering. Our results could pave the way for exploring quantum magnonics phenomena and designing future magnonics devices based on 2D van der Waals magnets.
Thermoelectric effects in spintronics are gathering increasing attention as a means of managing heat in nanoscale structures and of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role, however, little is known about the underlying physical mechanisms involved. The reason is the lack of information about magnon interactions and of reliable methods to obtain it, in particular for electrical conductors because of the intricate influence of electrons. Here, we demonstrate a conceptually new device that allows us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon-drag can be studied independently of the electron and phonon-drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. This information is crucial to understand the physics of electron-magnon interactions, magnon dynamics and thermal spin transport.
We report strong chiral coupling between magnons and photons in microwave waveguides that contain chains of small magnets on special lines. Large magnon accumulations at one edge of the chain emerge when exciting the magnets by a phased antenna array. This mechanism holds the promise of new functionalities in non-linear and quantum magnonics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا