No Arabic abstract
First results from the Parker Solar Probe (PSP) mission have revealed ubiquitous coherent ion-scale waves in the inner heliosphere, which are signatures of kinetic wave-particle interactions and fluid-scale instabilities. However, initial studies of the circularly polarized ion-scale waves observed by PSP have only thoroughly analyzed magnetic field signatures, precluding a determination of solar-wind frame propagation direction and intrinsic wave-polarization. A comprehensive determination of wave-properties requires measurements of both electric and magnetic fields. Here, we use full capabilities of the PSP/FIELDS instrument suite to measure both the electric and magnetic components of circularly polarized waves. Comparing spacecraft frame magnetic field measurements with the Doppler-shifted cold-plasma dispersion relation for parallel transverse waves constrains allowable plasma frame polarizations and wave-vectors. We demonstrate that the Doppler-shifted cold-plasma dispersion has a maximum spacecraft frequency $f_{sc}^{*}$ for which intrinsically right-handed fast-magnetosonic waves (FMWs) propagating sunwards can appear left-handed in the spacecraft frame. Observations of left-handed waves with $|f|>f_{sc}^{*}$ are uniquely explained by intrinsically left-handed, ion-cyclotron, waves (ICWs). We demonstrate that electric field measurements for waves with $|f|>f_{sc}^{*}$ are consistent with ICWs propagating away from the sun, verifying the measured electric field. Applying the verified electric field measurements to the full distribution of waves suggests that, in the solar wind frame, the vast majority of waves propagate away from the sun, indicating that the observed population of coherent ion-scale waves contains both intrinsically left and right hand polarized modes.
Based on in-situ measurements by Wind spacecraft from 2005 to 2015, this letter reports for the first time a clearly scale-dependent connection between proton temperatures and the turbulence in the solar wind. A statistical analysis of proton-scale turbulence shows that increasing helicity magnitudes correspond to steeper magnetic energy spectra. In particular, there exists a positive power-law correlation (with a slope $sim 0.4$) between the proton perpendicular temperature and the turbulent magnetic energy at scales $0.3 lesssim krho_p lesssim 1$, with $k$ being the wavenumber and $rho_p$ being the proton gyroradius. These findings present evidence of solar wind heating by the proton-scale turbulence. They also provide insight and observational constraint on the physics of turbulent dissipation in the solar wind.
Parker Solar Probe (PSP), NASAs latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the instruments in the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite. We address the presence of secondary proton beams in concert with ion-scale waves observed by FIELDS, the electromagnetic fields instrument suite. We show two events from PSPs 2nd orbit that demonstrate signatures consistent with wave-particle interactions. We showcase 3D velocity distribution functions (VDFs) measured by SPAN-I during times of strong wave power at ion-scales. From an initial instability analysis, we infer that the VDFs departed far enough away from local thermodynamic equilibrium (LTE) to provide sufficient free energy to locally generate waves. These events exemplify the types of instabilities that may be present and, as such, may guide future data analysis characterizing and distinguishing between different wave-particle interactions.
The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free paths of all species, their inertial lengths, their gyration radii, and their Debye lengths. The characteristic timescales include the expansion time, the collision times, and the periods associated with gyration, waves, and oscillations. We review the past and present research into the multi-scale nature of the solar wind based on in-situ spacecraft measurements and plasma theory. We emphasize that couplings of processes across scales are important for the global dynamics and thermodynamics of the solar wind. We describe methods to measure in-situ properties of particles and fields. We then discuss the role of expansion effects, non-equilibrium distribution functions, collisions, waves, turbulence, and kinetic microinstabilities for the multi-scale plasma evolution.
The solar wind shows periods of highly Alfvenic activity, where velocity fluctuations and magnetic fluctuations are aligned or anti-aligned with each other. It is generally agreed that solar wind plasma velocity and magnetic field fluctuations observed by Parker Solar Probe (PSP) during the first encounter are mostly highly Alfvenic. However, quantitative measures of Alfvenicity are needed to understand how the characterization of these fluctuations compares with standard measures from prior missions in the inner and outer heliosphere, in fast wind and slow wind, and at high and low latitudes. To investigate this issue, we employ several measures to quantify the extent of Alfvenicity -- the Alfven ratio $r_A$, {normalized} cross helicity $sigma_c$, {normalized} residual energy $sigma_r$, and the cosine of angle between velocity and magnetic fluctuations $costheta_{vb}$. We show that despite the overall impression that the Alfvenicity is large in the solar wind sampled by PSP during the first encounter, during some intervals the cross helicity starts decreasing at very large scales. These length-scales (often $> 1000 d_i$) are well inside inertial range, and therefore, the suppression of cross helicity at these scales cannot be attributed to kinetic physics. This drop at large scales could potentially be explained by large-scale shears present in the inner heliosphere sampled by PSP. In some cases, despite the cross helicity being constant down to the noise floor, the residual energy decreases with scale in the inertial range. These results suggest that it is important to consider all these measures to quantify Alfvenicity.
We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquists instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He$^{2+}$ temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He$^{2+}$ components on stability. Of 309 randomly selected spectra from the Wind spacecraft, $53.7%$ are unstable when the ion components are modeled as drifting bi-Maxwellians; only $4.5%$ of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates $gamma$ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively-large He$^{2+}$ drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.