Do you want to publish a course? Click here

A Majority of Solar Wind Intervals Support Ion-Driven Instabilities

102   0   0.0 ( 0 )
 Added by Kristopher Klein
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquists instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He$^{2+}$ temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He$^{2+}$ components on stability. Of 309 randomly selected spectra from the Wind spacecraft, $53.7%$ are unstable when the ion components are modeled as drifting bi-Maxwellians; only $4.5%$ of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates $gamma$ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively-large He$^{2+}$ drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.



rate research

Read More

446 - G. Q. Zhao , Y. Lin , X. Y. Wang 2020
Based on in-situ measurements by Wind spacecraft from 2005 to 2015, this letter reports for the first time a clearly scale-dependent connection between proton temperatures and the turbulence in the solar wind. A statistical analysis of proton-scale turbulence shows that increasing helicity magnitudes correspond to steeper magnetic energy spectra. In particular, there exists a positive power-law correlation (with a slope $sim 0.4$) between the proton perpendicular temperature and the turbulent magnetic energy at scales $0.3 lesssim krho_p lesssim 1$, with $k$ being the wavenumber and $rho_p$ being the proton gyroradius. These findings present evidence of solar wind heating by the proton-scale turbulence. They also provide insight and observational constraint on the physics of turbulent dissipation in the solar wind.
257 - R. A. Treumann , W. Baumjohann , 2018
A model-independent first-principle first-order investigation of the shape of turbulent density-power spectra in the ion-inertial range of the solar wind at 1 AU is presented. De-magnetised ions in the ion-inertial range of quasi-neutral plasmas respond to Kolmogorov (K) or Iroshnikov-Kraichnan (IK) inertial-range velocity turbulence power spectra via the spectrum of the velocity-turbulence-related random-mean-square induction-electric field. Maintenance of electrical quasi-neutrality by the ions causes deformations in the power spectral density of the turbulent density fluctuations. Kolmogorov inertial range spectra in solar wind velocity turbulence and observations of density power spectra suggest that the occasionally observed scale-limited bumps in the density-power spectrum may be traced back to the electric ion response. Magnetic power spectra react passively to the density spectrum by warranting pressure balance. This approach still neglects contribution of Hall currents and is restricted to the ion-inertial range scale. While both density and magnetic turbulence spectra in the affected range of ion-inertial scales deviate from Kolmogorov or Iroshnikov-Kraichnan, the velocity turbulence preserves its inertial range shape in this process to which spectral advection turns out to be secondary but may become observable under special external conditions. One such case observed by WIND is analysed. We discuss various aspects of this effect including the affected wavenumber scale range, dependence on angle between mean flow velocity and wavenumber and, for a radially expanding solar wind flow when assuming adiabatic expansion at fast solar wind speeds and a Parker dependence of the solar wind magnetic field on radius, also the presumable limitations on the radial location of the turbulent source region.
Electric field measurements of the Time Domain Sampler (TDS) receiver, part of the Radio and Plasma Waves (RPW) instrument on board Solar Orbiter, often exhibit very intense broadband wave emissions at frequencies below 20~kHz in the spacecraft frame. In this paper, we present a year-long study of electrostatic fluctuations observed in the solar wind at an interval of heliocentric distances from 0.5 to 1~AU. The RPW/TDS observations provide a nearly continuous data set for a statistical study of intense waves below the local plasma frequency. The on-board and continuously collected and processed properties of waveform snapshots allow for the mapping plasma waves at frequencies between 200~Hz and 20~kHz. We used the triggered waveform snapshots and a Doppler-shifted solution of the dispersion relation for wave mode identification in order to carry out a detailed spectral and polarization analysis. Electrostatic ion-acoustic waves are the common wave emissions observed between the local electron and proton plasma frequency in the soler wind. The occurrence rate of ion-acoustic waves peaks around perihelion at distances of 0.5~AU and decreases with increasing distances, with only a few waves detected per day at 0.9~AU. Waves are more likely to be observed when the local proton moments and magnetic field are highly variable. A more detailed analysis of more than 10000 triggered waveform snapshots shows the mean wave frequency at about 3 kHz and wave amplitude about 2.5 mV/m. The wave amplitude varies as 1/R^(1.38) with the heliocentric distance. The relative phase distribution between two components of the E-field shows a mostly linear wave polarization. Electric field fluctuations are closely aligned with the directions of the ambient field lines. Only a small number (3%) of ion-acoustic waves are observed at larger magnetic discontinuities.
Motivated by prior remote observations of a transition from striated solar coronal structures to more isotropic ``flocculated fluctuations, we propose that the dynamics of the inner solar wind just outside the Alfven critical zone, and in the vicinity of the first $beta=1$ surface, is powered by the relative velocities of adjacent coronal magnetic flux tubes. We suggest that large amplitude flow contrasts are magnetically constrained at lower altitude but shear-driven dynamics are triggered as such constraints are released above the Alfven critical zone, as suggested by global magnetohydrodynamic (MHD) simulations that include self-consistent turbulence transport. We argue that this dynamical evolution accounts for features observed by {it Parker Solar Probe} ({it PSP}) near initial perihelia, including magnetic ``switchbacks, and large transverse velocities that are partially corotational and saturate near the local Alfven speed. Large-scale magnetic increments are more longitudinal than latitudinal, a state unlikely to originate in or below the lower corona. We attribute this to preferentially longitudinal velocity shear from varying degrees of corotation. Supporting evidence includes comparison with a high Mach number three-dimensional compressible MHD simulation of nonlinear shear-driven turbulence, reproducing several observed diagnostics, including characteristic distributions of fluctuations that are qualitatively similar to {it PSP} observations near the first perihelion. The concurrence of evidence from remote sensing observations, {it in situ} measurements, and both global and local simulations supports the idea that the dynamics just above the Alfven critical zone boost low-frequency plasma turbulence to the level routinely observed throughout the explored solar system.
154 - Daniel Verscharen 2019
The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free paths of all species, their inertial lengths, their gyration radii, and their Debye lengths. The characteristic timescales include the expansion time, the collision times, and the periods associated with gyration, waves, and oscillations. We review the past and present research into the multi-scale nature of the solar wind based on in-situ spacecraft measurements and plasma theory. We emphasize that couplings of processes across scales are important for the global dynamics and thermodynamics of the solar wind. We describe methods to measure in-situ properties of particles and fields. We then discuss the role of expansion effects, non-equilibrium distribution functions, collisions, waves, turbulence, and kinetic microinstabilities for the multi-scale plasma evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا