Do you want to publish a course? Click here

Electronic transport in disordered graphene superlattices with scale-free correlated barrier spacements

67   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A transfer matrix approach is used to study the electronic transport in graphene superlattices with long-range correlated barrier spacements. By considering the low-energy electronic excitations as massless Dirac fermions, we compute by transmission spectra of graphene superlattices with potential barriers having spacements randomly distributed with long-range correlations governed by a power-law spectral density $S(k)propto 1/k^{alpha}$. We show that at large incidence angles, the correlations in the disorder distribution do not play a significant role in the electronic transmission. However, long-range correlations suppress the Anderson localization as normal incidence is approached and a band of transmitting modes sets up reminiscent of Klein tunneling.

rate research

Read More

We study charge transport in one-dimensional graphene superlattices created by applying layered periodic and disordered potentials. It is shown that the transport and spectral properties of such structures are strongly anisotropic. In the direction perpendicular to the layers, the eigenstates in a disordered sample are delocalized for all energies and provide a minimal non-zero conductivity, which cannot be destroyed by disorder, no matter how strong this is. However, along with extended states, there exist discrete sets of angles and energies with exponentially localized eigenfunctions (disorder-induced resonances). It is shown that, depending on the type of the unperturbed system, the disorder could either suppress or enhance the transmission. Most remarkable properties of the transmission have been found in graphene systems built of alternating p-n and n-p junctions. This transmission has anomalously narrow angular spectrum and, surprisingly, in some range of directions it is practically independent of the amplitude of fluctuations of the potential. Owing to these features, such samples could be used as building blocks in tunable electronic circuits. To better understand the physical implications of the results presented here, most of our results have been contrasted with those for analogous wave systems. Along with similarities, a number of quite surprising differences have been found.
We investigate the conductivity $sigma$ of graphene nanoribbons with zigzag edges as a function of Fermi energy $E_F$ in the presence of the impurities with different potential range. The dependence of $sigma(E_F)$ displays four different types of behavior, classified to different regimes of length scales decided by the impurity potential range and its density. Particularly, low density of long range impurities results in an extremely low conductance compared to the ballistic value, a linear dependence of $sigma(E_F)$ and a wide dip near the Dirac point, due to the special properties of long range potential and edge states. These behaviors agree well with the results from a recent experiment by Miao emph{et al.} (to appear in Science).
We theoretically investigate electron transport through corrugated graphene ribbons and show how the ribbon curvature leads to an electronic superlattice with a period set by the corrugation wave length. Transport through the ribbon depends sensitively on the superlattice band structure which, in turn, strongly depends on the geometry of the deformed sheet. In particular, we find that for ribbon widths where the transverse level separation is comparable to the the band edge energy, a strong current switching occurs as function of an applied backgate voltage. Thus, artificially corrugated graphene sheets or ribbons can be used for the study of Dirac fermions in periodic potentials. Furthermore, this provides an additional design paradigm for graphene-based electronics.
We investigate the electronic Bloch oscillation in bilayer graphene gradient superlattices using transfer matrix method. By introducing two kinds of gradient potentials of square barriers along electrons propagation direction, we find that Bloch oscillations up to terahertz can occur. Wannier-Stark ladders, as the counterpart of Bloch oscillation, are obtained as a series of equidistant transmission peaks, and the localization of the electronic wave function is also signature of Bloch oscillation. Forthermore, the period of Bloch oscillation decreases linearly with increasing gradient of barrier potentials.
We investigate the size scaling of the conductance of surface disordered graphene sheets of width W and length L. Metallic leads are attached to the sample ends across its width. At E ~ 0, the conductance scales with the system size as follows: i) For constant W/L, it remains constant as size is increased, at a value which depends almost lineally on that ratio; this scaling allows the definition of a conductivity value that results similar to the experimental one. ii) For fixed width, the conductance decreases exponentially with length L, both for ordered and disordered samples. Disorder reduces the exponential decay, leading to a higher conductance. iii) For constant length, conductance increases linearly with width W, a result that is exclusively due to the tails of the states of the metallic wide contact. iv) The average conductance does not show an appreciable dependence on magnetic field. Away from E = 0, the conductance shows the behavior expected in two-dimensional systems with surface disorder, i.e., ballistic transport.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا