No Arabic abstract
Critical transition points between symmetry-broken phases are characterized as fixed points in the renormalization group (RG) theory. We show that, following the standard Wilsonian procedure that traces out the large momentum modes, this well known fact can break down in non-Hermitian systems. Based on non-Hermitian Su-Schrieffer-Hegger (SSH)-type models, we propose a real-space decimation scheme to study the criticality between the topological and trivial phase. We provide concrete examples and an analytic proof to show that the real-space scheme perfectly overcomes the insufficiency of the standard method, especially in the sense that it always preserves the system at criticality as fixed points under RG. The proposed method can also greatly simplify the search of critical points for complicated non-Hermitian models by ruling out the irrelevant operators. These results pave the way towards more advanced RG-based techniques for the interacting non-Hermitian quantum systems.
We present a Lattice Non-Perturbative Renormalization Group (NPRG) approach to quantum XY spin models by using a mapping onto hardcore bosons. The NPRG takes as initial condition of the renormalization group flow the (local) limit of decoupled sites, allowing us to take into account the hardcore constraint exactly. The initial condition of the flow is equivalent to the large $S$ classical results of the corresponding spin system. Furthermore, the hardcore constraint is conserved along the RG flow, and we can describe both local and long-distance fluctuations in a non-trivial way. We discuss a simple approximation scheme, and solve the corresponding flow equations. We compute both the zero-temperature thermodynamics and the finite temperature phase diagram on the square and cubic lattices. The NPRG allows us to recover the correct critical physics at finite temperature in two and three dimensions. The results compare well with numerical simulations.
We introduce a real time version of the functional renormalization group which allows to study correlation effects on nonequilibrium transport through quantum dots. Our method is equally capable to address (i) the relaxation out of a nonequilibrium initial state into a (potentially) steady state driven by a bias voltage and (ii) the dynamics governed by an explicitly time-dependent Hamiltonian. All time regimes from transient to asymptotic can be tackled; the only approximation is the consistent truncation of the flow equations at a given order. As an application we investigate the relaxation dynamics of the interacting resonant level model which describes a fermionic quantum dot dominated by charge fluctuations. Moreover, we study decoherence and relaxation phenomena within the ohmic spin-boson model by mapping the latter to the interacting resonant level model.
We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is investigated by the second derivative of ground-state energy and the ground-state fidelity susceptibility. We show that the system undergoes a second-order phase transition with the Ising universal class by numerically computing the critical points and the critical exponents from the finite-size scaling theory. Interestingly, our results indicate that the biorthogonal quantum phase transitions are described by the biorthogonal fidelity susceptibility instead of the conventional fidelity susceptibility.
It has been recently suggested that when an Anderson impurity is immersed in the bulk of a topological insulator, a Kondo resonant peak will appear simultaneously with an in-gap bound-state when the band-dispersion has an inverted-Mexican-hat form. The mid-gap bound-state generates another spin state and the Kondo effect is thereby screened. In this paper we study this problem within a weak-coupling RG scheme where we show that the system exhibits complex crossover behavior between different symmetry configurations and may evolve into a self-screened-Kondo or SO(3) low energy fix point. Experimental consequences of this scenario are pointed out.
Quantum impurity models are the prototypical examples of quantum many-body dynamics which manifests in their spectral and transport properties. Single channel Anderson(and Kondo model) leads to the Fermi liquid ground state in the strong coupling regime which corresponds to a stable infrared fixed point at which the quantum impurity gets completely screened by the conduction electrons. Quantum impurity models with non-trivial density of states exhibit quantum phase transition and this quantum criticality lies in the universality class of local quantum critical systems. In this paper, we report first study of the flow equation renormalization of gapped Kondo model which has gapped density of states, the gap being at the Fermi level. Flow equation renormalization group method has proved to be one of the very robust renormalization methods to study Kondo physics both in equilibrium as well as in non-equilibrium. Here we have shown that this method can also be employed to study local quantum criticality. We have calculated the flow equations for the Kondo coupling and solved them for various values of the gap parameter and we find that there is suppression of Kondo divergence as gap is increased which signifies that as gap is increased, renormalization flow goes away from the strong coupling fixed point. We have also calculated the spin susceptibility and we find that as gap is increased, susceptibility goes over to the Curie behaviour and hence confirming the renormalization flow towards the local moment fixed point.