Do you want to publish a course? Click here

Boussinesq-Peregrine water wave models and their numerical approximation

97   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper we consider the numerical solution of Boussinesq-Peregrine type systems by the application of the Galerkin finite element method. The structure of the Boussinesq systems is explained and certain alternative nonlinear and dispersive terms are compared. A detailed study of the convergence properties of the standard Galerkin method, using various finite element spaces on unstructured triangular grids, is presented. Along with the study of the Peregrine system, a new Boussinesq system of BBM-BBM type is derived. The new system has the same structure in its momentum equation but differs slightly in the mass conservation equation compared to the Peregrine system. Further, the finite element method applied to the new system has better convergence properties, when used for its numerical approximation. Due to the lack of analytical formulas for solitary wave solutions for the systems under consideration, a Galerkin finite element method combined with the Petviashvili iteration is proposed for the numerical generation of accurate approximations of line solitary waves. Various numerical experiments related to the propagation of solitary and periodic waves over variable bottom topography and their interaction with the boundaries of the domains are presented. We conclude that both systems have similar accuracy when approximate long waves of small amplitude while the Galerkin finite element method is more effective when applied to BBM-BBM type systems.

rate research

Read More

121 - David Cohen , Annika Lang 2021
Solutions to the stochastic wave equation on the unit sphere are approximated by spectral methods. Strong, weak, and almost sure convergence rates for the proposed numerical schemes are provided and shown to depend only on the smoothness of the driving noise and the initial conditions. Numerical experiments confirm the theoretical rates. The developed numerical method is extended to stochastic wave equations on higher-dimensional spheres and to the free stochastic Schrodinger equation on the unit sphere.
The paper proposes a new, conservative fully-discrete scheme for the numerical solution of the regularised shallow water Boussinesq system of equations in the cases of periodic and reflective boundary conditions. The particular system is one of a class of equations derived recently and can be used in practical simulations to describe the propagation of weakly nonlinear and weakly dispersive long water waves, such as tsunamis. Studies of small-amplitude long waves usually require long-time simulations in order to investigate scenarios such as the overtaking collision of two solitary waves or the propagation of transoceanic tsunamis. For long-time simulations of non-dissipative waves such as solitary waves, the preservation of the total energy by the numerical method can be crucial in the quality of the approximation. The new conservative fully-discrete method consists of a Galerkin finite element method for spatial semidiscretisation and an explicit relaxation Runge--Kutta scheme for integration in time. The Galerkin method is expressed and implemented in the framework of mixed finite element methods. The paper provides an extended experimental study of the accuracy and convergence properties of the new numerical method. The experiments reveal a new convergence pattern compared to standard Galerkin methods.
393 - Vijay Kumar Patel 2021
The present article is devoting a numerical approach for solving a fractional partial differential equation (FPDE) arising from electromagnetic waves in dielectric media (EMWDM). The truncated Bernoulli and Hermite wavelets series with unknown coefficients have been used to approximate the solution in both the temporal and spatial variables. The basic idea for discretizing the FPDE is wavelet approximation based on the Bernoulli and Hermite wavelets operational matrices of integration and differentiation. The resulted system of a linear algebraic equation has been solved by the collocation method. Moreover, convergence and error analysis have been discussed. Finally, several numerical experiments with different fractional-order derivatives have been provided and compared with the exact analytical solutions to illustrate the accuracy and efficiency of the method.
In this work, we study the numerical approximation of a class of singular fully coupled forward backward stochastic differential equations. These equations have a degenerate forward component and non-smooth terminal condition. They are used, for example, in the modeling of carbon market[9] and are linked to scalar conservation law perturbed by a diffusion. Classical FBSDEs methods fail to capture the correct entropy solution to the associated quasi-linear PDE. We introduce a splitting approach that circumvent this difficulty by treating differently the numerical approximation of the diffusion part and the non-linear transport part. Under the structural condition guaranteeing the well-posedness of the singular FBSDEs [8], we show that the splitting method is convergent with a rate $1/2$. We implement the splitting scheme combining non-linear regression based on deep neural networks and conservative finite difference schemes. The numerical tests show very good results in possibly high dimensional framework.
Partial differential equations (PDEs) are used, with huge success, to model phenomena arising across all scientific and engineering disciplines. However, across an equally wide swath, there exist situations in which PDE models fail to adequately model observed phenomena or are not the best available model for that purpose. On the other hand, in many situations, nonlocal models that account for interaction occurring at a distance have been shown to more faithfully and effectively model observed phenomena that involve possible singularities and other anomalies. In this article, we consider a generic nonlocal model, beginning with a short review of its definition, the properties of its solution, its mathematical analysis, and specific concrete examples. We then provide extensive discussions about numerical methods, including finite element, finite difference, and spectral methods, for determining approximate solutions of the nonlocal models considered. In that discussion, we pay particular attention to a special class of nonlocal models that are the most widely studied in the literature, namely those involving fractional derivatives. The article ends with brief considerations of several modeling and algorithmic extensions which serve to show the wide applicability of nonlocal modeling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا