No Arabic abstract
We reanalyze and expand upon models proposed in 2015 for linear dilaton black holes, and use them to test several speculative ideas about black hole physics. We examine ideas based on the definition of quantum extremal surfaces in quantum field theory in curved space-time. The low energy effective field theory of our model is the large N CGHS model, which includes the one loop effects that are taken into account in the island proposal for understanding the Page curve. Contrary to the results of the island analysis, that solution leads to a singular geometry for the evaporated black hole. If the singularity obeys Cosmic Censorship then Hawking evaporation leaves behind a remnant object with a finite fraction of the black hole entropy. If the singularity becomes naked at some point, boundary conditions on a time-like line emanating from that point can produce a sensible model where we expect a Page curve. We show that the fully UV complete model gives a correct Page curve, as it must since the model is manifestly unitary. Recent result on replicawormholes suggest that the island formula, which appears to involve only one loop computations, in fact encodes non-perturbative contributions to the gravitational path integral. The question of why Euclidean gravity computations can capture information about microscopic states of quantum gravity remains mysterious. In a speculative coda to the paper we suggest that the proper way of understanding the relation between Euclidean gravity path integrals and quantum spectra is via a statistical approach to Jacobsons interpretation of general relativistic field equations as the hydrodynamic equations of the area law for the maximal entropy of causal diamonds.
We compute the classical effective action of color charges moving along worldlines by integrating out the Yang-Mills gauge field to next-to-leading order in the coupling. An adapted version of the Bern-Carrasco-Johansson (BCJ) double-copy construction known from quantum scattering amplitudes is then applied to the Feynman integrands, yielding the prediction for the classical effective action of point masses in dilaton gravity. We check the validity of the result by independently constructing the effective action in dilaton gravity employing field redefinitions and gauge choices that greatly simplify the perturbative construction. Complete agreement is found at next-to-leading order. Finally, upon performing the post-Newtonian expansion of our result, we find agreement with the corresponding action of scalar-tensor theories known from the literature. Our results represent a proof of concept for the classical double-copy construction of the gravitational effective action and provides another application of a BCJ-like double copy beyond scattering amplitudes.
We demonstrate that a recently proposed classical double copy procedure to construct the effective action of two massive particles in dilaton-gravity from the analogous problem of two color charged particles in Yang-Mills gauge theory fails at next-to-next-to-leading orders in the post-Minkowskian (3PM) or post-Newtonian (2PN) expansions.
In the investigation and resolution of the cosmological constant problem the inclusion of the dynamics of quantum gravity can be a crucial step. In this work we suggest that the quantum constraints in a canonical theory of gravity can provide a way of addressing the issue: we consider the case of two-dimensional quantum dilaton gravity non-minimally coupled to a U(1) gauge field, in the presence of an arbitrary number of massless scalar matter fields, intended also as an effective description of highly symmetrical higher-dimensional models. We are able to quantize the system non-perturbatively and obtain an expression for the cosmological constant Lambda in terms of the quantum physical states, in a generalization of the usual QFT approach. We discuss the role of the classical and quantum gravitational contributions to Lambda and present a partial spectrum of values for it.
We study the information quantities, including the holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP), over Gubser-Rocha model. The remarkable property of this model is the zero entropy density at ground state, in term of which we expect to extract novel, even singular informational properties in zero temperature limit. Surprisedly, we do not observe any singular behavior of entanglement-related physical quantities under the zero temperature limit. Nevertheless, we find a peculiar property from Gubser-Rocha model that in low temperature region, the HEE decreases with the increase of temperature, which is contrary to that in most holographic models. We argue that this novel phenomenon is brought by the singular property of the zero temperature limit, of which the analytical verification is present. In addition, we also compare the features of the information quantities in Gubser-Rocha model with those in Reissner-Nordstrom Anti-de Sitter (RN-AdS) black hole model. It is shown that the HEE and MI of Gubser-Rocha model are always larger than those of RN-AdS model, while the EoP behaves in an opposite way. Our results indicate that MI and EoP could have different abilities in describing mixed state entanglement.
In this work, kinks with non-canonical kinetic energy terms are studied in a type of two-dimensional dilaton gravity model. The linear stability issue is generally discussed for arbitrary static solutions with the aid of supersymmetric quantum mechanics theory, and the stability criteria are obtained. As an explicit example, a model with cuscuton term is studied. After rewriting the equations of motion into simpler first-order formalism and choosing a polynomial superpotential, an exact self-gravitating kink solution is obtained. The impacts of the cuscuton term are discussed.