No Arabic abstract
We study the $CP$ asymmetry of $B^pmto omega K^pm$ with the inclusion of the $rho-omega$ mixing mechanism. It is shown that the $CP$ asymmetry of $B^pmtoomega K^pm$ experimentally measured ($A_{CP}^{text{exp}}$) and conventionally defined ($A_{CP}^{text{con}}$) are in fact different, which relation can be illustrated as $A_{CP}^{text{exp}}=A_{CP}^{text{con}}+Delta A_{CP}^{rhoomega}$, with $Delta A_{CP}^{rhoomega}$ the $rho-omega$ mixing contribution to $A_{CP}^{text{exp}}$. $A_{CP}^{text{exp}}$ is in fact the regional $CP$ asymmetry of $B^pmtopi^+pi^-pi^0 K^pm$ when the invariant mass of the three pions lies in the vicinity of the $omega$ resonance. The numerical value of $Delta A_{CP}^{rhoomega}$ is extracted from the experimental data of $B^pmtopi^+pi^-K^pm$ and is found to be comparable with $A_{CP}^{text{exp}}$, hence, nonnegligible. The conventionally defined $CP$ asymmetry, $A_{CP}^{text{con}}$, is obtained from the values of $A_{CP}^{text{exp}}$ and $Delta A_{CP}^{rhoomega}$, and is compared with the theoretical calculations in the literature.
Isospin violating mixing of rho- and omega-mesons is reconsidered in terms of propagators. Its influence on various pairs of (rho^0,omega)-decays to the same final states is demonstrated. Some of them, (rho^0,omega)topi^+pi^- and (rho^0,omega)topi^0gamma, have been earlier discussed in the literature, others (e.g., (rho^0,omega)toetagamma and (rho^0,omega)to e^+e^-) are new in this context. Changes in partial widths for all the decay pairs are shown to be correlated. The set of present experimental data, though yet inconclusive, provides some limits for the direct (rhoomega)-coupling and indirectly supports enhancement of rho^0topi^0gamma in comparison with rho^{pm}topi^{pm}gamma, though not so large as in some previous estimates.
The strong and electromagnetic corrections to $rho-omega$ mixing are calculated using a SU(2) version of resonance chiral theory up to next-to-leading orders in $1/N_C$ expansion, respectively. Up to our accuracy, the effect of the momentum dependence of $rho-omega$ mixing is incorporated due to the inclusion of loop contributions. We analyze the impact of $rho-omega$ mixing on the pion vector form factor by performing numerical fit to the data extracted from $e^+e^-rightarrow pi^+pi^-$ and $taurightarrow u_{tau}2pi$, while the decay width of $omegarightarrow pi^+pi^-$ is taken into account as a constraint. It is found that the momentum dependence is significant in a good description of the experimental data. In addition, based on the fitted values of the involved parameters, we analyze the decay width of $omega rightarrow pi^+pi^-$, which turns out to be highly dominated by the $rho-omega$ mixing effect.
The $B^{pm}$ meson production asymmetry in $pp$ collisions is measured using $B^+ to bar{D}^0 pi^+$ decays. The data were recorded by the LHCb experiment during Run 1 of the LHC at centre-of-mass energies of $sqrt{s}=$ 7 and 8 TeV. The production asymmetries, integrated over transverse momenta in the range $2 < p_{rm T} < 30$ GeV/$c$, and rapidities in the range $2.1 < y < 4.5$, are measured to be begin{align*} mathcal{A}_{rm prod}(B^+,sqrt{s}=7~{rm TeV}) &= (-0.41 pm 0.49 pm 0.10) times 10^{-2}, mathcal{A}_{rm prod}(B^+,sqrt{s}=8~{rm TeV}) &= (-0.53 pm 0.31 pm 0.10) times 10^{-2}, end{align*} where the first uncertainties are statistical and the second are systematic. These production asymmetries are used to correct the raw asymmetries of $B^{+} to J/psi K^{+}$ decays, thus allowing a measurement of the $CP$ asymmetry, begin{equation*} mathcal{A}_{CP} = (0.09 pm 0.27 pm 0.07) times 10^{-2}. end{equation*}
Influence of the isospin-violating (rho^0, omega)-mixing is discussed for any pair of decays of rho^0, omega into the same final state. It is demonstrated, in analogy to the CP-violation in neutral kaon decays, that isospin violation can manifest itself in various forms: direct violation in amplitudes and/or violation due to mixing. In addition to the known decays (rho^0, omega)topi^+pi^- and (rho^0, omega)topi^0gamma, the pair of decays to e^+e^- and the whole set of radiative decays with participation of rho^0, omega (in initial or final states) are shown to be also useful and perspective for studies. Existing data on these decays agree with the universal character of the mixing parameter and indirectly support enhancement of rho^0topi^0gamma in respect to rho^{pm}topi^{pm}gamma. Future precise measurements will allow to separate different forms of isospin violation and elucidate their mechanisms.
We present a detailed study of direct CP violation and branching ratios in the channels $B^{0,pm} to pi^{+}pi^{-} V^{0,pm}$, where $V$ is a vector meson ($K^{* 0,pm}$ or $rho^{pm}$). Emphasis is placed upon the important role played by ${{rho}^{0}}-{omega}$ mixing effects in the estimation of the CP-violating asymmetry parameter, $a_{cp}$, associated with the difference of $B$ and $bar B$ decay amplitudes. A thorough study of the helicity amplitudes is presented as a function of the pion-pion invariant mass. All of the calculations and simulations considered correspond to channels which will be analyzed at the LHCb facility.