Do you want to publish a course? Click here

Dark Matter, Dark Energy and Fundamental Acceleration

195   0   0.0 ( 0 )
 Added by Doug Edmonds
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the existence of an acceleration scale in galaxies and galaxy clusters. The presence of the same acceleration scale found at very different scales and in very different astrophysical objects strongly supports the existence of a fundamental acceleration scale governing the observed gravitational physics. We also comment on the implication of such a fundamental acceleration scale on the problem of dark matter. We discuss the relevance of the fundamental acceleration for the nature of dark matter as well as for structure formation to be explored in future numerical simulations.



rate research

Read More

A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration is a highly elastic (psim -rho), very smooth form of energy called ``dark energy accounting for about 75% of the Universe. The ``simplest explanation for dark energy is the zero-point energy density associated with the quantum vacuum; however, all estimates for its value are many orders-of-magnitude too large. Other ideas for dark energy include a very light scalar field or a tangled network of topological defects. An alternate explanation invokes gravitational physics beyond general relativity. Observations and experiments underway and more precise cosmological measurements and laboratory experiments planned for the next decade will test whether or not dark energy is the quantum energy of the vacuum or something more exotic, and whether or not general relativity can self consistently explain cosmic acceleration. Dark energy is the most conspicuous example of physics beyond the standard model and perhaps the most profound mystery in all of science.
We study the effect of an explicit interaction between two scalar fields components describing dark matter in the context of a recent proposal framework for interaction. We find that, even assuming a very small coupling, it is sufficient to explain the observational effects of a cosmological constant, and also overcome the problems of the $Lambda$CDM model without assuming an exotic dark energy.
190 - Bo-Yu Pu , Xiao-Dong Xu , Bin Wang 2014
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the linear approximation. Furthermore we investigate the influence of the interaction between the early dark energy and the dark matter and its effect on the structure growth and CMB. We finally constrain the early dark energy model parameters and the coupling between dark sectors by confronting to different observations.
270 - Yasushi Suto 2010
Answering well-known fundamental questions is usually regarded as the major goal of science. Discovery of other unknown and fundamental questions is, however, even more important. Recognition that we didnt know anything is the basic scientific driver for the next generation. Cosmology indeed enjoys such an exciting epoch. What is the composition of our universe? This is one of the well-known fundamental questions that philosophers, astronomers and physicists have tried to answer for centuries. Around the end of the last century, cosmologists finally recognized that We didnt know anything. Except for atoms that comprise slightly less than 5% of the universe, our universe is apparently dominated by unknown components; 23% is the known unknown (dark matter), and 72% is the unknown unknown (dark energy). In the course of answering a known fundamental question, we have discovered an unknown, even more fundamental, question: What is dark matter? What is dark energy? There are a variety of realistic particle physics models for dark matter, and its experimental detection may be within reach. On the other hand, it is fair to say that there is no widely accepted theoretical framework to describe the nature of dark energy. This is exactly why astronomical observations will play a key role in unveiling its nature. I will review our current understanding of the dark sky, and then present on-going Japanese project, SuMIRe, to discover even more unexpected questions.
We present three distinct types of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. Our construction draws from the pull-back formalism for fluids and generalises the fluid action to involve couplings to the scalar field. We investigate the cosmology of each class of model both at the background and linearly perturbed level. We choose a potential for the scalar field and a specific coupling function for each class of models and we compute the Cosmic Microwave Background and matter power spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا