Do you want to publish a course? Click here

X-ray emission evolution of the Galactic ultra-luminous X-ray pulsar Swift J0243.6+6124 during the 2017-2018 outburst observed by the MAXI GSC

133   0   0.0 ( 0 )
 Added by Mutsumi Sugizaki
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper reports on the X-ray emission evolution of the ultra-luminous Galactic X-ray pulsar, Swift J0243.6+6124, during the 2017-2018 giant outburst observed by the MAXI GSC. The 2-30 keV light curve and the energy spectra confirm that the luminosity $L_mathrm{X}$ reached $2.5times 10^{39}$ erg s$^{-1}$, 10 times higher than the Eddington limit. When the source was luminous with $L_mathrm{X}gtrsim 0.9times 10^{38}$ erg s$^{-1}$, it exhibited a negative correlation on a hardness-intensity diagram. However, two hardness ratios, a soft color ($=$ 4-10 keV / 2-4 keV) and a hard color ($=$ 10-20 keV / 4-10 keV), showed somewhat different behavior across a characteristic luminosity of $L_mathrm{c}simeq 5times 10^{38}$ erg s$^{-1}$. The soft color changed more than the hard color when $L_mathrm{X} < L_mathrm{c}$, whereas the opposite was observed above $L_mathrm{c}$. The spectral change above $L_mathrm{c}$ was represented by a broad enhanced feature at $sim 6$ keV. The pulse profiles made a transition from a single-peak to a double-peak one as the source brightened across $L_mathrm{c}$. These spectral and pulse-shape properties can be interpreted by a scenario that the accretion columns on the neutron star surface, producing the Comptonized X-ray emission, gradually became taller as $L_mathrm{X}$ increased. The broad 6 keV enhancement could be a result of cyclotron-resonance absorption at $sim 10$ keV, corresponding to a surface magnetic field $B_mathrm{s}simeq 1.1times 10^{12}$ G. The spin-frequency derivatives calculated with the Fermi GBM data showed a smooth correlation with $L_mathrm{X}$ up to the outburst peak, and its linear coefficient is comparable to those of X-ray binary pulsars whose $B_mathrm{s}$ are $(1-8)times 10^{12}$ G. These results suggest that $B_mathrm{s}$ of Swift J0243.6$+$6124 is a few times $10^{12}$ G.



rate research

Read More

The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {it the Hard X-ray Modulation Telescope} ({it Insight-rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to $rm 150~keV$. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with $Brm sim 10^{13}~G$, $Drm sim 6~kpc$ and peak luminosity of $rm >10^{39}~erg~s^{-1}$ which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.
Swift J0243.6+6124 is a newly discovered Galactic Be/X-ray binary, revealed in late September 2017 in a giant outburst with a peak luminosity of 2E+39 (d/7 kpc)^2 erg/s (0.1-10 keV), with no formerly reported activity. At this luminosity, Swift J0243.6+6124 is the first known galactic ultraluminous X-ray pulsar. We describe Neutron star Interior Composition Explorer (NICER)} and Fermi Gamma-ray Burst Monitor (GBM) timing and spectral analyses for this source. A new orbital ephemeris is obtained for the binary system using spin-frequencies measured with GBM and 15-50 keV fluxes measured with the Neil Gehrels Swift Observatory Burst Alert Telescope to model the systems intrinsic spin-up. Power spectra measured with NICER show considerable evolution with luminosity, including a quasi-periodic oscillation (QPO) near 50 mHz that is omnipresent at low luminosity and has an evolving central frequency. Pulse profiles measured over the combined 0.2-100 keV range show complex evolution that is both luminosity and energy dependent. Near the critical luminosity of L~1E+38 erg/s, the pulse profiles transition from single-peaked to double peaked, the pulsed fraction reaches a minimum in all energy bands, and the hardness ratios in both NICER and GBM show a turn-over to softening as the intensity increases. This behavior repeats as the outburst rises and fades, indicating two distinct accretion regimes. These two regimes are suggestive of the accretion structure on the neutron star surface transitioning from a Coulomb collisional stopping mechanism at lower luminosities to a radiation-dominated stopping mechanism at higher luminosities. This is the highest observed (to date) value of the critical luminosity, suggesting a magnetic field of B ~1E+13 G.
We present a spectral study of the ultraluminous Be/X-ray transient pulsar Swift J0243.6+6124 using Neutron Star Interior Composition Explorer (NICER) observations during the systems 2017--2018 giant outburst. The 1.2--10~keV energy spectrum of the source can be approximated with an absorbed cut-off power law model. We detect strong, luminosity-dependent emission lines in the 6--7 keV energy range. A narrow 6.42 keV line, observed in the sub-Eddington regime, is seen to evolve into a broad Fe-line profile in the super-Eddington regime. Other features are found at 6.67 and 6.97 keV in the Fe-line complex. An asymmetric broad line profile, peaking at 6.67 keV, is possibly due to Doppler effects and gravitational redshift. The 1.2--79 keV broadband spectrum from NuSTAR and NICER observations at the outburst peak is well described by an absorbed cut-off power law plus multiple Gaussian lines and a blackbody component. Physical reflection models are also tested to probe the broad iron line feature. Depending on the mass accretion rate, we found emission sites that are evolving from ~5000 km to a range closer to the surface of the neutron star. Our findings are discussed in the framework of the accretion disk and its implication on the magnetic field, the presence of optically thick accretion curtain in the magnetosphere, jet emission, and the massive, ultra-fast outflow expected at super-Eddington accretion rates. We do not detect any signatures of a cyclotron absorption line in the NICER or NuSTAR data.
Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC and the Swift XRT follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is $approx$ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm$^{-2}$ s$^{-1}$. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) them, the outburst observed with MAXI may have occurred after the quiescence of 30-40 years.
SwiftJ0243.6+6124, the first Galactic ultra-luminous X-ray pulsar, was observed during its 2017-2018 outburst with emph{AstroSat} at both sub- and super-Eddington levels of accretionwith X-ray luminosities of $L_{X}{sim}7{times}10^{37}$ and $6{times}10^{38}$$ergs^{-1}$, respectively.Our broadband timing and spectral observations show that X-ray pulsations at ${sim}9.85rm{s}$ have been detected up to 150keV when the source was accreting at the super-Eddington level.The pulse profiles are a strong function of both energy and source luminosity,showing a double-peaked profile with pulse fraction increasing from $sim$$10{%}$ at $1.65rm{keV}$ to 40--80$%$ at $70rm{keV}$.The continuum X-ray spectra are well-modeled with a high energy cut-off power law($Gamma$${sim}$0.6-0.7) and one or two blackbody components with temperatures of $sim$0.35$rm{keV}$ and $1.2rm{keV}$, depending on the accretion level.No iron line emission is observed at sub-Eddington level, while a broad emission feature at around 6.9keV is observed at the super-Eddington level, along with a blackbody radius($121-142rm{km}$) that indicates the presence of optically thick outflows.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا