No Arabic abstract
In contrast to bulk materials, nanoscale crystal growth is critically influenced by size- and shape-dependent properties. However, it is challenging to decipher how stoichiometry, in the realm of mixed-valence elements, can act to control physical properties, especially when complex bonding is implicated by short and long-range ordering of structural defects. Here, solution-grown iron-oxide nanocrystals (NCs) of the pilot wustite system are found to convert into iron-deficient rock-salt and ferro-spinel sub-domains, but attain a surprising tetragonally distorted local structure. Cationic vacancies within chemically uniform NCs are portrayed as the parameter to tweak the underlying properties. These lattice imperfections are shown to produce local exchange-anisotropy fields that reinforce the nanoparticles magnetization and overcome the influence of finite-size effects. The concept of atomic-scale defect control in subcritical size NCs, aspires to become a pathway to tailor-made properties with improved performance for hyperthermia heating over defect-free NCs.
The magnetic structure of the mixed antiferromagnet NdMn$_{0.8}$Fe$_{0.2}$O$_3$ was resolved. Neutron powder diffraction data definitively resolve the Mn-sublattice with a magnetic propagation vector ${bf k} = (000)$ and with the magnetic structure (A$_x$, F$_y$, G$_z$) for 1.6~K~$< T < T_N (approx 59$~K). The Nd-sublattice has a (0, f$_y$, 0) contribution in the same temperature interval. The Mn sublattice undergoes spin-reorientation transition at $T_1 approx 13$~K while the Nd magnetic moment keep ordered abruptly increases at this temperature. Powder X-ray diffraction shows a strong magnetoelastic effect at $T_N$ but no additional structural phase transitions from 2~K to 300~K. Density functional theory calculations confirm the magnetic structure of the undoped NdMnO$_3$ as part of our analysis. Taken together, these results show the magnetic structure of Mn-sublattice in NdMn$_{0.8}$Fe$_{0.2}$O$_3$ is a combination of the Mn and Fe parent compounds, but the magnetic ordering of Nd sublattice spans over broader temperature interval than in case of NdMnO$_3$ and NdFeO$_3$. This result is a consequence of the fact that the Nd ions do not order independently, but via polarization from Mn/Fe sublattice.
We use density functional theory to calculate the structure, band-gap and magnetic properties of oxygen-deficient SrTi$_{1-x-y}$Fe$_x$Co$_y$O$_{3-delta}$ with x = y = 0.125 and ${delta}$ = (0,0.125,0.25). The valence and the high or low spin-states of the Co and Fe ions, as well as the lattice distortion and the band-gap, depend on the oxygen deficiency, the locations of the vacancies, and on the direction of the Fe-Co axis. A charge redistribution that resembles a self-regulatory response lies behind the valence spin-state changes. Ferromagnetism dominates, and both the magnetization and the band gap are greatest at ${delta}$ = 0.125. This qualitatively mimics the previously reported magnetization measured for SrTiFeO$_{3-delta}$, which was maximum at an intermediate deposition pressure of oxygen.
A general method for the quantification of dipolar interactions in assemblies of nanoparticles has been developed from a model sample constituted by magnetite nanoparticles of 5 nm in diameter, in powder form with oleic acid as a surfactant so that the particles were solely separated from each other through an organic layer of about 1 nm in thickness. This quantification is based on the comparison of the distribution of energy barriers for magnetization reversal obtained from time-dependent relaxation measurements starting from either (i) an almost random orientation of the particles magnetizations or (ii) a collinear arrangement of them prepared by previously field cooling the sample. Experimental results and numerical simulations show that the mean dipolar field acting on each single particle is significantly reduced when particles magnetizations are collinearly aligned. Besides, the intrinsic distribution of the energy barriers of anisotropy for the non-interacting case was evaluated from a reference sample where the same magnetic particles were individually coated with a thick silica shell in order to make dipolar interactions negligible. Interestingly, the results of the numerical simulations account for the relative energy shift of the experimental energy barrier distributions corresponding to the interacting and non-interacting cases, thus supporting the validity of the proposed method for the quantification of dipolar interactions.
Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In$_2$O$_3$ films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.
The magnetic state of heavy metal Pt thin films in proximity to the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$ has been investigated systematically by means of x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity measurements combined with angle-dependent magnetotransport studies. To reveal intermixing effects as the possible cause for induced magnetic moments in Pt, we compare thin film heterostructures with different order of the layer stacking and different interface properties. For standard Pt layers on Y$_{3}$Fe$_{5}$O$_{12}$ thin films, we do not detect any static magnetic polarization in Pt. These samples show an angle-dependent magnetoresistance behavior, which is consistent with the established spin Hall magnetoresistance. In contrast, for the inverted layer sequence, Y$_{3}$Fe$_{5}$O$_{12}$ thin films grown on Pt layers, Pt displays a finite induced magnetic moment comparable to that of all-metallic Pt/Fe bilayers. This magnetic moment is found to originate from finite intermixing at the Y$_{3}$Fe$_{5}$O$_{12}$/Pt interface. As a consequence, we found a complex angle-dependent magnetoresistance indicating a superposition of the spin Hall and the anisotropic magnetoresistance in these type of samples. Both effects can be disentangled from each other due to their different angle dependence and their characteristic temperature evolution.