No Arabic abstract
It is shown that a circular dipole can deflect the focused laser beam that induces it, and will experience a corresponding transverse force. Quantitative expressions are derived for Gaussian and angular tophat beams, while the effects vanish in the plane-wave limit. The phenomena are analogous to the Magnus effect pushing a spinning ball onto a curved trajectory. The optical case originates in the coupling of spin and orbital angular momentum of the dipole and the light. In optical tweezers the force causes off-axis displacement of the trapping position of an atom by a spin-dependent amount up to $lambda/2pi$, set by the direction of a magnetic field. This suggests direct methods to demonstrate and explore these effects, for instance to induce spin-dependent motion.
We study the modification of the atomic spontaneous emission rate, i.e. Purcell effect, of $^{87}$Rb in the vicinity of an optical nanofiber ($sim$500 nm diameter). We observe enhancement and inhibition of the atomic decay rate depending on the alignment of the induced atomic dipole relative to the nanofiber. Finite-difference time-domain simulations are in quantitative agreement with the measurements when considering the atoms as simple oscillating linear dipoles. This is surprising since the multi-level nature of the atoms should produce a different radiation pattern, predicting smaller modification of the lifetime than the measured ones. This work is a step towards characterizing and controlling atomic properties near optical waveguides, fundamental tools for the development of quantum photonics.
We demonstrate single-shot imaging and narrow-line cooling of individual alkaline earth atoms in optical tweezers; specifically, strontium-88 atoms trapped in $515.2~text{nm}$ light. We achieve high-fidelity single-atom-resolved imaging by detecting photons from the broad singlet transition while cooling on the narrow intercombination line, and extend this technique to highly uniform two-dimensional arrays of $121$ tweezers. Cooling during imaging is based on a previously unobserved narrow-line Sisyphus mechanism, which we predict to be applicable in a wide variety of experimental situations. Further, we demonstrate optically resolved sideband cooling of a single atom close to the motional ground state of a tweezer. Precise determination of losses during imaging indicate that the branching ratio from $^1$P$_1$ to $^1$D$_2$ is more than a factor of two larger than commonly quoted, a discrepancy also predicted by our ab initio calculations. We also measure the differential polarizability of the intercombination line in a $515.2~text{nm}$ tweezer and achieve a magic-trapping configuration by tuning the tweezer polarization from linear to elliptical. We present calculations, in agreement with our results, which predict a magic crossing for linear polarization at $520(2)~text{nm}$ and a crossing independent of polarization at 500.65(50)nm. Our results pave the way for a wide range of novel experimental avenues based on individually controlled alkaline earth atoms in tweezers -- from fundamental experiments in atomic physics to quantum computing, simulation, and metrology implementations.
We present a theoretical investigation of coherent dynamics of a spin qubit encoded in hyperfine sublevels of an alkali-metal atom in a far off-resonant optical dipole trap. The qubit is prepared in the clock transition utilizing the Zeeman states with zero projection of the spin angular momentum. We focus on various dephasing processes such as the residual motion of the atom, fluctuations of the trapping field and its incoherent scattering and their effects on the qubit dynamics. We implement the most general fully-quantum treatment of the atomic motion, so our results remain valid in the limit of close-to-ground-state cooling with low number of vibrational excitations. We support our results by comparison with an experiment showing reasonable correspondence with no fitting parameters.
We report on highly effective trapping of cold atoms by a new method for a stable single optical trap in the near-optical resonant regime. An optical trap with the near-optical resonance condition consists of not only the dipole but also the radiative forces, while a trap using a far-off resonance dominates only the dipole force. We estimate a near-optical resonant trap for ultracold rubidium atoms in the range between -0.373 and -2.23 THz from the resonance. The time dependence of the trapped atoms indicates some difference of the stable center-of-mass positions in the near-optical resonant trap, and also indicates that the differences are caused by the change of the equilibrium condition of the optical dipole and radiative forces. A stable position depends only on laser detuning due to the change in the radiative force; however, the position is ineffective against the change in the laser intensity, which results in a change in the radiative force.
We present a dispersive imaging method for trapped quantum gases based on digital off-axis holography. Both phase delay and intensity of the probe field are determined from the same image. Due to the heterodyne gain inherent to the holographic method it is possible to retrieve the phase delay induced by the atoms at probe beam doses two orders of magnitude lower than phase-contrast imaging methods. Using the full field of the probe beam we numerically correct for image defocusing.