We present a dispersive imaging method for trapped quantum gases based on digital off-axis holography. Both phase delay and intensity of the probe field are determined from the same image. Due to the heterodyne gain inherent to the holographic method it is possible to retrieve the phase delay induced by the atoms at probe beam doses two orders of magnitude lower than phase-contrast imaging methods. Using the full field of the probe beam we numerically correct for image defocusing.
We use a coherent fiber bundle to demonstrate the endoscopic absorption imaging of quantum gases. We show that the fiber bundle introduces spurious noise in the picture mainly due to the strong core-to-core coupling. By direct comparison with free-space pictures, we observe that there is a maximum column density that can be reliably measured using our fiber bundle, and we derive a simple criterion to estimate it. We demonstrate that taking care of not exceeding such maximum, we can retrieve exact quantitative information about the atomic system, making this technique appealing for systems requiring isolation form the environment.
We review the recent developments and the current status in the field of quantum-gas cavity QED. Since the first experimental demonstration of atomic self-ordering in a system composed of a Bose-Einstein condensate coupled to a quantized electromagnetic mode of a high-$Q$ optical cavity, the field has rapidly evolved over the past decade. The composite quantum-gas--cavity systems offer the opportunity to implement, simulate, and experimentally test fundamental solid-state Hamiltonians, as well as to realize non-equilibrium many-body phenomena beyond conventional condensed-matter scenarios. This hinges on the unique possibility to design and control in open quantum environments photon-induced tunable-range interaction potentials for the atoms using tailored pump lasers and dynamic cavity fields. Notable examples range from Hubbard-like models with long-range interactions exhibiting a lattice-supersolid phase, over emergent magnetic orderings and quasicrystalline symmetries, to the appearance of dynamic gauge potentials and non-equilibrium topological phases. Experiments have managed to load spin-polarized as well as spinful quantum gases into various cavity geometries and engineer versatile tunable-range atomic interactions. This led to the experimental observation of spontaneous discrete and continuous symmetry breaking with the appearance of soft-modes as well as supersolidity, density and spin self-ordering, dynamic spin-orbit coupling, and non-equilibrium dynamical self-ordered phases among others. In addition, quantum-gas--cavity setups offer new platforms for quantum-enhanced measurements. In this review, starting from an introduction to basic models, we pedagogically summarize a broad range of theoretical developments and put them in perspective with the current and near future state-of-art experiments.
We theoretically propose and experimentally demonstrate the use of motional sidebands in a trapped ensemble of $^{87}$Rb atoms to engineer tunable long-range XXZ spin models. We benchmark our simulator by probing a ferromagnetic to paramagnetic dynamical phase transition in the Lipkin-Meshkov-Glick (LMG) model, a collective XXZ model plus additional transverse and longitudinal fields, via Rabi spectroscopy. We experimentally reconstruct the boundary between the dynamical phases, which is in good agreement with mean-field theoretical predictions. Our work introduces new possibilities in quantum simulation of anisotropic spin-spin interactions and quantum metrology enhanced by many-body entanglement.
Ghost imaging is a technique -- first realized in quantum optics -- in which the image emerges from cross-correlation between particles in two separate beams. One beam passes through the object to a bucket (single-pixel) detector, while the second beams spatial profile is measured by a high resolution (multi-pixel) detector but never interacts with the object. Neither detector can reconstruct the image independently. However, until now ghost imaging has only been demonstrated with photons. Here we report the first realisation of ghost imaging of an object using massive particles. In our experiment, the two beams are formed by correlated pairs of ultracold metastable helium atoms, originating from two colliding Bose-Einstein condensates (BECs) via $s$-wave scattering. We use the higher-order Kapitza-Dirac effect to generate the large number of correlated atom pairs required, enabling the creation of a ghost image with good visibility and sub-millimetre resolution. Future extensions could include ghost interference as well as tests of EPR entantlement and Bells inequalities.
We demonstrate a photon-counting technique for detecting Bragg excitation of an ultracold gas of atoms. By measuring the response of the light field to the atoms, we derive a signal independent of traditional time-of-flight atom-imaging techniques. With heterodyne detection we achieve photon shot-noise limited detection of the amplification or depletion of one of the Bragg laser beams. Photon counting for Bragg spectroscopy will be useful for strongly interacting gases where atom-imaging detection fails. In addition, this technique provides the ability to resolve the evolution of excitations as a function of pulse duration.