Do you want to publish a course? Click here

Mergers of Equal-Mass Binaries with Compact Object Companions from Mass Transfer in Triple Star Systems

145   0   0.0 ( 0 )
 Added by Nathan Leigh W
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we consider triple systems composed of main-sequence (MS) stars, and their internal evolution due to stellar and binary evolution. Our focus is on triples that produce white dwarfs (WDs), where Roche lobe overflow of an evolving tertiary triggers accretion onto the inner binary via a circumbinary disk (CBD) driving it toward a mass ratio of unity. We present a combination of analytic- and population synthesis-based calculations performed using the texttt{SeBa} code to constrain the expected frequency of such systems, given a realistic initial population of MS triples, and provide the predicted distributions of orbital periods. We identify the parameter space for triples that can accommodate a CBD, to inform future numerical simulations of suitable initial conditions. We find that $lesssim$ 10% of all MS triples should be able to accommodate a CBD around the inner binary, and compute lower limits for the production rates. This scenario broadly predicts mergers of near equal-mass binaries, producing blue stragglers (BSs), Type Ia supernovae, gamma ray bursts and gravitational wave-induced mergers, along with the presence of an outer WD tertiary companion. We compare our predicted distributions to a sample of field BS binaries, and argue that our proposed mechanism explains the observed range of orbital periods. Finally, the mechanism considered here could produce hypervelocity MS stars, WDs and even millisecond pulsars with masses close to the Chandrasekhar mass limit, and be used to constrain the maximum remnant masses at the time of any supernova explosion.



rate research

Read More

Ultra-compact X-ray binaries (UCXBs) are low-mass X-ray binaries with hydrogen-deficient mass-donors and ultra-short orbital periods. They have been suggested to be the potential Laser Interferometer Space Antenna (LISA) sources in the low-frequency region. Several channels for the formation of UCXBs have been proposed so far. In this article, we carried out a systematic study on the He star donor channel, in which a neutron star (NS) accretes matter from a He main-sequence star through Roche-lobe overflow, where the mass-transfer is driven by gravitational wave radiation. Firstly, we followed the long-term evolution of the NS+He main-sequence star binaries by employing the stellar evolution code Modules for Experiments in Stellar Astrophysics, and thereby obtained the initial parameter spaces for the production of UCXBs. We then used these results to perform a detailed binary population synthesis approach to obtain the Galactic rates of UCXBs through this channel. We estimate the Galactic rates of UCXBs appearing as LISA sources to be $sim3.1-11.9, rm Myr^{-1}$ through this channel, and the number of such UCXB-LISA sources in the Galaxy can reach about $1-26$ calibrated by observations. The present work indicates that the He star donor channel may contribute significantly to the Galactic UCXB formation rate. We found that the evolutionary tracks of UCXBs through this channel can account for the location of the five transient sources with relatively long orbital periods quite well. We also found that such UCXBs can be identified by their locations in the mass-transfer rate versus the orbital period diagram.
Simulations of neutron star-black hole (NSBH) binaries generally consider black holes with masses in the range $(5-10)M_odot$, where we expect to find most stellar mass black holes. The existence of lower mass black holes, however, cannot be theoretically ruled out. Low-mass black holes in binary systems with a neutron star companion could mimic neutron star-neutron (NSNS) binaries, as they power similar gravitational wave (GW) and electromagnetic (EM) signals. To understand the differences and similarities between NSNS mergers and low-mass NSBH mergers, numerical simulations are required. Here, we perform a set of simulations of low-mass NSBH mergers, including systems compatible with GW170817. Our simulations use a composition and temperature dependent equation of state (DD2) and approximate neutrino transport, but no magnetic fields. We find that low-mass NSBH mergers produce remnant disks significantly less massive than previously expected, and consistent with the post-merger outflow mass inferred from GW170817 for moderately asymmetric mass ratio. The dynamical ejecta produced by systems compatible with GW170817 is negligible except if the mass ratio and black hole spin are at the edge of the allowed parameter space. That dynamical ejecta is cold, neutron-rich, and surprisingly slow for ejecta produced during the tidal disruption of a neutron star : $vsim (0.1-0.15)c$. We also find that the final mass of the remnant black hole is consistent with existing analytical predictions, while the final spin of that black hole is noticeably larger than expected -- up to $chi_{rm BH}=0.84$ for our equal mass case.
We present three-dimensional simulations of the dynamics of binary neutron star (BNS) mergers from the late stage of the inspiral process up to $sim 20$ ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH). We investigate five equal-mass models of total gravitational mass $2.207$, $2.373$, $2.537$, $2.697$ and $2.854 M_odot$, respectively, and four unequal mass models with $M_{mathrm{ADM}}simeq 2.53 M_odot$ and $qsimeq 0.94$, $0.88$, $0.82$, and $0.77$ (where $q = M^{(1)}/M^{(2)}$ is the mass ratio). We use a semi-realistic equation of state (EOS) namely, the seven-segment piece-wise polytropic SLyPP with a thermal component given by $Gamma_{th} = 1.8$. We have also compared the resulting dynamics (for one model) using both, the BSSN-NOK and CCZ4 methods for the evolution of the gravitational sector, and also different reconstruction methods for the matter sector, namely PPM, WENO and MP5. Our results show agreement and high resolution, but superiority of BSSN-NOK supplemented by WENO reconstruction at lower resolutions. One of the important characteristics of the present investigation is that, for the first time, this has been done using only publicly available open source software, in particular, the Einstein Toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. All of the source code and parameters used for the simulations have been made publicly available. This not only makes it possible to re-run and re-analyze our data; it also enables others to directly build upon this work for future research.
[Abridged] We test the evolutionary model of cool close binaries on the observed properties of near contact binaries (NCBs). Those with a more massive component filling the Roche lobe are SD1 binaries whereas in SD2 binaries the Roche lobe filling component is less massive. Our evolutionary model assumes that, following the Roche lobe overflow by the more massive component (donor), mass transfer occurs until mass ratio reversal. A binary in an initial phase of mass transfer, before mass equalization, is identified with SD1 binary. We show that the transferred mass forms an equatorial bulge around the less massive component (accretor). Its presence slows down the mass transfer rate to the value determined by the thermal time scale of the accretor, once the bulge sticks out above the Roche lobe. It means, that in a binary with a (typical) mass ratio of 0.5 the SD1 phase lasts at least 10 times longer than resulting from the standard evolutionary computations neglecting this effect. This is why we observe so many SD1 binaries. Our explanation is in contradiction to predictions identifying the SD1 phase with a broken contact phase of the Thermal Relaxation Oscillations model. The continued mass transfer, past mass equalization, results in mass ratio reversed. SD2 binaries are identified with this phase. Our model predicts that the time scales of SD1 and SD2 phases are comparable to one another. Analysis of the observations of 22 SD1 binaries, 27 SD2 binaries and 110 contact binaries (CBs) shows that relative number of both types of NCBs favors similar time scales of both phases of mass transfer. Total masses, orbital angular momenta and orbital periods of SD1 and SD2 binaries are indistinguishable from each other whereas they differ substantially from the corresponding parameters of CBs. We conclude that the results of the analysis fully support the model presented in this paper.
Detecting post-merger features of merger remnants is highly dependent on the depth of observation images. However, it has been poorly discussed how long the post-merger features are visible under different observational conditions. We investigate a merger-feature time useful for understanding the morphological transformation of galaxy mergers via numerical simulations. We use N-body/hydrodynamic simulations, including gas cooling, star formation, and supernova feedback. We run a set of simulations with various initial orbital configurations and with progenitor galaxies having different morphological properties mainly for equal-mass mergers. As reference models, we ran additional simulations for non-equal mass mergers and mergers in a large halo potential. Mock images using the SDSS $r$ band are synthesized to estimate a merger-feature times and compare it between the merger simulations. The mock images suggest that the post-merger features involve a small fraction of stars, and the merger-feature time depends on galaxy interactions. In an isolated environment, the merger-feature time is, on average, $sim$ 2 times the final coalescence time for a shallow surface bright limit of 25 mag/arcsec^2. For a deeper surface brightness limit of 28 mag/arcsec^2, however, the merger-feature time is a factor of two longer, which is why the detection of post-merger features using shallow surveys has been difficult. Tidal force of a cluster potential is effective in stripping post-merger features out and reduces the merger-feature time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا