No Arabic abstract
We present three-dimensional simulations of the dynamics of binary neutron star (BNS) mergers from the late stage of the inspiral process up to $sim 20$ ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH). We investigate five equal-mass models of total gravitational mass $2.207$, $2.373$, $2.537$, $2.697$ and $2.854 M_odot$, respectively, and four unequal mass models with $M_{mathrm{ADM}}simeq 2.53 M_odot$ and $qsimeq 0.94$, $0.88$, $0.82$, and $0.77$ (where $q = M^{(1)}/M^{(2)}$ is the mass ratio). We use a semi-realistic equation of state (EOS) namely, the seven-segment piece-wise polytropic SLyPP with a thermal component given by $Gamma_{th} = 1.8$. We have also compared the resulting dynamics (for one model) using both, the BSSN-NOK and CCZ4 methods for the evolution of the gravitational sector, and also different reconstruction methods for the matter sector, namely PPM, WENO and MP5. Our results show agreement and high resolution, but superiority of BSSN-NOK supplemented by WENO reconstruction at lower resolutions. One of the important characteristics of the present investigation is that, for the first time, this has been done using only publicly available open source software, in particular, the Einstein Toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. All of the source code and parameters used for the simulations have been made publicly available. This not only makes it possible to re-run and re-analyze our data; it also enables others to directly build upon this work for future research.
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies we utilize analytical fits to postmerger numerical-relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasi-universal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy.
As current gravitational wave (GW) detectors increase in sensitivity, and particularly as new instruments are being planned, there is the possibility that ground-based GW detectors will observe GWs from highly eccentric neutron star binaries. We present the first detailed study of highly eccentric BNS systems with full (3+1)D numerical relativity simulations using consistent initial conditions, i.e., setups which are in agreement with the Einstein equations and with the equations of general relativistic hydrodynamics in equilibrium. Overall, our simulations cover two different equations of state (EOSs), two different spin configurations, and three to four different initial eccentricities for each pairing of EOS and spin. We extract from the simulated waveforms the frequency of the f-mode oscillations induced during close encounters before the merger of the two stars. The extracted frequency is in good agreement with f-mode oscillations of individual stars for the irrotational cases, which allows an independent measure of the supranuclear equation of state not accessible for binaries on quasi-circular orbits. The energy stored in these f-mode oscillations can be as large as $10^{-3}M_odot sim 10^{51}$ erg, even with a soft EOS. In order to estimate the stored energy, we also examine the effects of mode mixing due to the stars offset from the origin on the f-mode contribution to the GW signal. While in general (eccentric) neutron star mergers produce bright electromagnetic counterparts, we find that the luminosity decreases when the eccentricity becomes too large, due to a decrease of the ejecta mass. Finally, the use of consistent initial configurations also allows us to produce high-quality waveforms for different eccentricities which can be used as a testbed for waveform model development of highly eccentric binary neutron star systems.
We continue our study of the binary neutron star parameter space by investigating the effect of the spin orientation on the dynamics, gravitational wave emission, and mass ejection during the binary neutron star coalescence. We simulate seven different configurations using multiple resolutions to allow a reasonable error assessment. Due to the particular choice of the setups, five configurations show precession effects, from which two show a precession (wobbling) of the orbital plane, while three show a bobbing motion, i.e., the orbital angular momentum does not precess, while the orbital plane moves along the orbital angular momentum axis. Considering the ejection of mass, we find that precessing systems can have an anisotropic mass ejection, which could lead to a final remnant kick of $sim 40 rm km/s$ for the studied systems. Furthermore, for the chosen configurations, antialigned spins lead to larger mass ejecta than aligned spins, so that brighter electromagnetic counterparts could be expected for these configurations. Finally, we compare our simulations with the precessing, tidal waveform approximant IMRPhenomPv2_NRTidalv2 and find good agreement between the approximant and our numerical relativity waveforms with phase differences below 1.2 rad accumulated over the last $sim$ 16 gravitational wave cycles.
We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between $0.75$ and $0.99$. Specifically, these systems are J1756-2251, J0737-3039A, J1906+0746, B1534+12, J0453+1559 and B1913+16. We follow the dynamics of the merger from the late stage of the inspiral process up to $sim$ 20 ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems ($q=0.75$, J0453+1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein Toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and frequencies of the BNS after the merger and the BH properties in the two cases in which the system collapse within the simulated time.
We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes $sim 0.1$. They start at a gravitational-wave frequency of $sim392$~Hz and cover more than $1$ precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasi-local spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from a nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.