Do you want to publish a course? Click here

Mercury-related health benefits from retrofitting coal-fired power plants in China

78   0   0.0 ( 0 )
 Added by Sili Zhou
 Publication date 2020
  fields Economy Physics
and research's language is English




Ask ChatGPT about the research

China has implemented retrofitting measures in coal-fired power plants (CFPPs) to reduce air pollution through small unit shutdown (SUS), the installation of air pollution control devices (APCDs) and power generation efficiency (PGE) improvement. The reductions in highly toxic Hg emissions and their related health impacts by these measures have not been well studied. To refine mitigation options, we evaluated the health benefits of reduced Hg emissions via retrofitting measures during Chinas 12th Five-Year Plan by combining plant-level Hg emission inventories with the China Hg Risk Source-Tracking Model. We found that the measures reduced Hg emissions by 23.5 tons (approximately 1/5 of that from CFPPs in 2010), preventing 0.0021 points of per-foetus intelligence quotient (IQ) decrements and 114 deaths from fatal heart attacks. These benefits were dominated by CFPP shutdowns and APCD installations. Provincial health benefits were largely attributable to Hg reductions in other regions. We also demonstrated the necessity of considering human health impacts, rather than just Hg emission reductions, in selecting Hg control devices. This study also suggests that Hg control strategies should consider various factors, such as CFPP locations, population densities and trade-offs between reductions of total Hg (THg) and Hg2+.



rate research

Read More

To contain the pandemic of coronavirus (COVID-19) in Mainland China, the authorities have put in place a series of measures, including quarantines, social distancing, and travel restrictions. While these strategies have effectively dealt with the critical situations of outbreaks, the combination of the pandemic and mobility controls has slowed Chinas economic growth, resulting in the first quarterly decline of Gross Domestic Product (GDP) since GDP began to be calculated, in 1992. To characterize the potential shrinkage of the domestic economy, from the perspective of mobility, we propose two new economic indicators: the New Venues Created (NVC) and the Volumes of Visits to Venue (V^3), as the complementary measures to domestic investments and consumption activities, using the data of Baidu Maps. The historical records of these two indicators demonstrated strong correlations with the past figures of Chinese GDP, while the status quo has dramatically changed this year, due to the pandemic. We hereby presented a quantitative analysis to project the impact of the pandemic on economies, using the recent trends of NVC and V^3. We found that the most affected sectors would be travel-dependent businesses, such as hotels, educational institutes, and public transportation, while the sectors that are mandatory to human life, such as workplaces, residential areas, restaurants, and shopping sites, have been recovering rapidly. Analysis at the provincial level showed that the self-sufficient and self-sustainable economic regions, with internal supplies, production, and consumption, have recovered faster than those regions relying on global supply chains.
Various measures have been taken in different countries to mitigate the Covid-19 epidemic. But, throughout the world, many citizens dont understand well how these measures are taken and even question the decisions taken by their government. Should the measures be more (or less) restrictive? Are they taken for a too long (or too short) period of time? To provide some quantitative elements of response to these questions, we consider the well-known SEIR model for the Covid-19 epidemic propagation and propose a pragmatic model of the government decision-making operation. Although simple and obviously improvable, the proposed model allows us to study the tradeoff between health and economic aspects in a pragmatic and insightful way. Assuming a given number of phases for the epidemic and a desired tradeoff between health and economic aspects, it is then possible to determine the optimal duration of each phase and the optimal severity level for each of them. The numerical analysis is performed for the case of France but the adopted approach can be applied to any country. One of the takeaway messages of this analysis is that being able to implement the optimal 4-phase epidemic management strategy in France would have led to 1.05 million infected people and a GDP loss of 231 billion euro instead of 6.88 million of infected and a loss of 241 billion euro. This indicates that, seen from the proposed model perspective, the effectively implemented epidemic management strategy is good economically, whereas substantial improvements might have been obtained in terms of health impact. Our analysis indicates that the lockdown/severe phase should have been more severe but shorter, and the adjustment phase occurred earlier. Due to the natural tendency of people to deviate from the official rules, updating measures every month over the whole epidemic episode seems to be more appropriate.
We study the consequences of job markets heavy reliance on referrals. Referrals screen candidates and lead to better matches and increased productivity, but disadvantage job-seekers who have few or no connections to employed workers, leading to increased inequality. Coupled with homophily, referrals also lead to immobility: a demographic groups low current employment rate leads that group to have relatively low future employment as well. We identify conditions under which distributing referrals more evenly across a population not only reduces inequality, but also improves future productivity and economic mobility. We use the model to examine optimal policies, showing that one-time affirmative action policies involve short-run production losses, but lead to long-term improvements in equality, mobility, and productivity due to induced changes in future referrals. We also examine how the possibility of firing workers changes the effects of referrals.
Estimating health benefits of reducing fossil fuel use from improved air quality provides important rationales for carbon emissions abatement. Simulating pollution concentration is a crucial step of the estimation, but traditional approaches often rely on complicated chemical transport models that require extensive expertise and computational resources. In this study, we develop a novel and succinct machine learning framework that is able to provide precise and robust annual average fine particle (PM2.5) concentration estimations directly from a high-resolution fossil energy use data set. The accessibility and applicability of this framework show great potentials of machine learning approaches for integrated assessment studies. Applications of the framework with Chinese data reveal highly heterogeneous health benefits of reducing fossil fuel use in different sectors and regions in China with a mean of $34/tCO2 and a standard deviation of $84/tCO2. Reducing rural and residential coal use offers the highest co-benefits with a mean of $360/tCO2. Our findings prompt careful policy designs to maximize cost-effectiveness in the transition towards a carbon-neutral energy system.
Research on belief formation has produced contradictory findings on whether and when communication between group members will improve the accuracy of numeric estimates such as economic forecasts, medical diagnoses, and job candidate assessments. While some evidence suggests that carefully mediated processes such as the Delphi method produce more accurate beliefs than unstructured discussion, others argue that unstructured discussion outperforms mediated processes. Still others argue that independent individuals produce the most accurate beliefs. This paper shows how network theories of belief formation can resolve these inconsistencies, even when groups lack apparent structure as in informal conversation. Emergent network structures of influence interact with the pre-discussion belief distribution to moderate the effect of communication on belief formation. As a result, communication sometimes increases and sometimes decreases the accuracy of the average belief in a group. The effects differ for mediated processes and unstructured communication, such that the relative benefit of each communication format depends on both group dynamics as well as the statistical properties of pre-interaction beliefs. These results resolve contradictions in previous research and offer practical recommendations for teams and organizations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا