Do you want to publish a course? Click here

On the Outage Performance of Ambient Backscatter Communications

111   0   0.0 ( 0 )
 Added by Yinghui Ye
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Ambient backscatter communications (AmBackComs) have been recognized as a spectrum- and energy-efficient technology for Internet of Things, as it allows passive backscatter devices (BDs) to modulate their information into the legacy signals, e.g., cellular signals, and reflect them to their associated receivers while harvesting energy from the legacy signals to power their circuit operation. {color{black} However, the co-channel interference between the backscatter link and the legacy link and the non-linear behavior of energy harvesters at the BDs have largely been ignored in the performance analysis of AmBackComs. Taking these two aspects, this paper provides a comprehensive outage performance analysis for an AmBackCom system with multiple backscatter links}, where one of the backscatter links is opportunistically selected to leverage the legacy signals transmitted in a given resource block. For any selected backscatter link, we propose an adaptive reflection coefficient (RC), which is adapted to the non-linear energy harvesting (EH) model and the location of the selected backscatter link, to minimize the outage probability of the backscatter link. In order to study the impact of co-channel interference on both backscatter and legacy links, for a selected backscatter link, we derive the outage probabilities for the legacy link and the backscatter link. Furthermore, we study the best and worst outage performances for the backscatter system where the selected backscatter link maximizes or minimizes the signal-to-interference-plus noise ratio (SINR) at the backscatter receiver. We also study the best and worst outage performances for the legacy link where the selected backscatter link results in the lowest and highest co-channel interference to the legacy receiver, respectively.



rate research

Read More

179 - Xiaolun Jia , Xiangyun Zhou 2021
We consider an ambient backscatter communication (AmBC) system aided by an intelligent reflecting surface (IRS). The optimization of the IRS to assist AmBC is extremely difficult when there is no prior channel knowledge, for which no design solutions are currently available. We utilize a deep reinforcement learning-based framework to jointly optimize the IRS and reader beamforming, with no knowledge of the channels or ambient signal. We show that the proposed framework can facilitate effective AmBC communication with a detection performance comparable to several benchmarks under full channel knowledge.
In this paper, a backscatter cooperation (BC) scheme is proposed for non-orthogonal multiple access (NOMA) downlink transmission. The key idea is to enable one user to split and then backscatter part of its received signals to improve the reception at another user. To evaluate the performance of the proposed BC-NOMA scheme, three benchmark schemes are introduced. They are the non-cooperation (NC)-NOMA scheme, the conventional relaying (CR)-NOMA scheme, and the incremental relaying (IR)-NOMA scheme. For all these schemes, the analytical expressions of the minimum total power to avoid information outage are derived, based on which their respective outage performance, expected rates, and diversity-multiplexing trade-off (DMT) are investigated. Analytical results show that the proposed BC-NOMA scheme strictly outperforms the NC-NOMA scheme in terms of all the three metrics. Furthermore, theoretical analyses are validated via Monte-Carlo simulations. It is shown that unlike the CR-NOMA scheme and the IR-NOMA scheme, the proposed BC-NOMA scheme can enhance the transmission reliability without impairing the transmission rate, which makes backscattering an appealing solution to cooperative NOMA downlinks.
Ambient backscatter communication (AmBC) enables radio-frequency (RF) powered backscatter devices (BDs) (e.g., sensors, tags) to modulate their information bits over ambient RF carriers in an over-the-air manner. This technology also called modulation in the air, thus has emerged as a promising solution to achieve green communications for future Internet-of-Things. This paper studies an AmBC system by leveraging the ambient orthogonal frequency division multiplexing (OFDM) modulated signals in the air. We first model such AmBC system from a spread-spectrum communication perspective, upon which a novel joint design for BD waveform and receiver detector is proposed. The BD symbol period is designed to be in general an integer multiplication of the OFDM symbol period, and the waveform for BD bit `0 maintains the same state within a BD symbol period, while the waveform for BD bit `1 has a state transition in the middle of each OFDM symbol period within a BD symbol period. In the receiver detector design, we construct the test statistic that cancels out the direct-link interference by exploiting the repeating structure of the ambient OFDM signals due to the use of cyclic prefix. For the system with a single-antenna receiver, the maximum-likelihood detector is proposed to recover the BD bits, for which the optimal threshold is obtained in closed-form expression. For the system with a multi-antenna receiver, we propose a new test statistic, and derive the optimal detector. Moreover, practical timing synchronization algorithms are proposed, and we also analyze the effect of various system parameters on the system performance. Finally, extensive numerical results are provided to verify that the proposed transceiver design can improve the system bit-error-rate (BER) performance and the operating range significantly, and achieve much higher data rate, as compared to the conventional design.
Existing studies about ambient backscatter communication mostly assume flat-fading channels. However, frequency-selective channels widely exist in many practical scenarios. Therefore, this paper investigates ambient backscatter communication systems over frequency-selective channels. In particular, we propose an interference-free transceiver design to facilitate signal detection at the reader. Our design utilizes the cyclic prefix (CP) of orthogonal frequency-division multiplexing (OFDM) source symbols, which can cancel the signal interference and thus enhance the detection accuracy at the reader. Meanwhile, our design leads to no interference on the existing OFDM communication systems. Next we suggest a chi-square based detector for the reader and derive the optimal detection threshold. Simulations are then provided to corroborate our proposed studies.
In this paper, we study the outage performance of simultaneous wireless information and power transfer (SWIP- T) based three-step two-way decode-and-forward (DF) relay networks, where both power-splitting (PS) and harvest-then-forward are employed. In particular, we derive the expressions of terminal-to-terminal (T2T) and system outage probabilities based on a Gaussian-Chebyshev quadrature approximation, and obtain the T2T and system outage capacities. The effects of various system parameters, e.g., the static power allocation ratio at the relay, symmetric PS, as well as asymmetric PS, on the outage performance of the investigated network are examined. It is shown that our derived expression for T2T outage capacity is more accurate than existing analytical results, and that the asymmetric PS achieves a higher system outage capacity than the symmetric one when the channels between the relay node and the terminal nodes have different statistic gains.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا