Do you want to publish a course? Click here

Training Strategies for Autoencoder-based Detection of False Data Injection Attacks

105   0   0.0 ( 0 )
 Added by Chenguang Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The security of energy supply in a power grid critically depends on the ability to accurately estimate the state of the system. However, manipulated power flow measurements can potentially hide overloads and bypass the bad data detection scheme to interfere the validity of estimated states. In this paper, we use an autoencoder neural network to detect anomalous system states and investigate the impact of hyperparameters on the detection performance for false data injection attacks that target power flows. Experimental results on the IEEE 118 bus system indicate that the proposed mechanism has the ability to achieve satisfactory learning efficiency and detection accuracy.



rate research

Read More

State estimation is of considerable significance for the power system operation and control. However, well-designed false data injection attacks can utilize blind spots in conventional residual-based bad data detection methods to manipulate measurements in a coordinated manner and thus affect the secure operation and economic dispatch of grids. In this paper, we propose a detection approach based on an autoencoder neural network. By training the network on the dependencies intrinsic in normal operation data, it effectively overcomes the challenge of unbalanced training data that is inherent in power system attack detection. To evaluate the detection performance of the proposed mechanism, we conduct a series of experiments on the IEEE 118-bus power system. The experiments demonstrate that the proposed autoencoder detector displays robust detection performance under a variety of attack scenarios.
In this chapter we review some of the basic attack constructions that exploit a stochastic description of the state variables. We pose the state estimation problem in a Bayesian setting and cast the bad data detection procedure as a Bayesian hypothesis testing problem. This revised detection framework provides the benchmark for the attack detection problem that limits the achievable attack disruption. Indeed, the trade-off between the impact of the attack, in terms of disruption to the state estimator, and the probability of attack detection is analytically characterized within this Bayesian attack setting. We then generalize the attack construction by considering information-theoretic measures that place fundamental limits to a broad class of detection, estimation, and learning techniques. Because the attack constructions proposed in this chapter rely on the attacker having access to the statistical structure of the random process describing the state variables, we conclude by studying the impact of imperfect statistics on the attack performance. Specifically, we study the attack performance as a function of the size of the training data set that is available to the attacker to estimate the second-order statistics of the state variables.
State estimation is a data processing algorithm for converting redundant meter measurements and other information into an estimate of the state of a power system. Relying heavily on meter measurements, state estimation has proven to be vulnerable to cyber attacks. In this paper, a novel targeted false data injection attack (FDIA) model against AC state estimation is proposed. Leveraging on the intrinsic load dynamics in ambient conditions and important properties of the Ornstein-Uhlenbeck process, we, from the viewpoint of intruders, design an algorithm to extract power network parameters purely from PMU data, which are further used to construct the FDIA vector. Requiring no network parameters and relying only on limited phasor measurement unit (PMU) data, the proposed FDIA model can target specific states and launch large deviation attacks. Sufficient conditions for the proposed FDIA model are also developed. Various attack vectors and attacking regions are studied in the IEEE 39-bus system, showing that the proposed FDIA method can successfully bypass the bad data detection and launch targeted large deviation attacks with very high probabilities.
A novel false data injection attack (FDIA) model against DC state estimation is proposed, which requires no network parameters and exploits only limited phasor measurement unit (PMU) data. The proposed FDIA model can target specific states and launch large deviation attacks using estimated line parameters. Sufficient conditions for the proposed method are also presented. Different attack vectors are studied in the IEEE 39-bus system, showing that the proposed FDIA method can successfully bypass the bad data detection (BDD) with high success rates of up to 95.3%.
We address the problem of robust state reconstruction for discrete-time nonlinear systems when the actuators and sensors are injected with (potentially unbounded) attack signals. Exploiting redundancy in sensors and actuators and using a bank of unknown input observers (UIOs), we propose an observer-based estimator capable of providing asymptotic estimates of the system state and attack signals under the condition that the numbers of sensors and actuators under attack are sufficiently small. Using the proposed estimator, we provide methods for isolating the compromised actuators and sensors. Numerical examples are provided to demonstrate the effectiveness of our methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا