No Arabic abstract
Monolayer WSe$_2$ hosts bright single-photon emitters. Because of its compliance, monolayer WSe$_2$ conforms to patterned substrates without breaking, thus creating the potential for large local strain, which is one activation mechanism of its intrinsic quantum emitters. Here, we report an approach to creating spatially and spectrally isolated quantum emitters from WSe$_2$ monolayers with few or no detrimental sources of emission. We show that a bilayer of hexagonal boron nitride (hBN) and WSe$_2$ placed on a nanostructured substrate can be used to create and shape wrinkles that communicate local strain to the WSe$_2$, thus creating quantum emitters that are isolated from substrate features. We compare quantum emitters created directly on top of substrate features with quantum emitters forming along wrinkles and find that the spectra of the latter consist of mainly a single peak and a low background fluorescence. We also discuss possible approaches to controlling emitter position along hBN wrinkles.
Color centers in 2-dimensional hexagonal boron nitride (h-BN) have recently emerged as stable and bright single-photon emitters (SPEs) operating at room temperature. In this study, we combine theory and experiment to show that vacancy-based SPEs selectively form at nano-scale wrinkles in h-BN with its optical dipole preferentially aligned to the wrinkle direction. By using density functional theory calculations, we find that the wrinkle curvature plays a crucial role in localizing vacancy-based SPE candidates and aligning the defects symmetry plane to the wrinkle direction. By performing optical measurements on SPEs created in h-BN single-crystal flakes, we experimentally confirm the wrinkle-induced generation of SPEs and their polarization alignment to the wrinkle direction. Our results not only provide a new route to controlling the atomic position and the optical property of the SPEs but also revealed the possible crystallographic origin of the SPEs in h-BN, greatly enhancing their potential for use in solid-state quantum photonics and quantum information processing.
Single photon emitters in two-dimensional materials are promising candidates for future generation of quantum photonic technologies. In this work, we experimentally determine the quantum efficiency (QE) of single photon emitters (SPE) in few-layer hexagonal boron nitride (hBN). We employ a metal hemisphere that is attached to the tip of an atomic force microscope to directly measure the lifetime variation of the SPEs as the tip approaches the hBN. This technique enables non-destructive, yet direct and absolute measurement of the QE of SPEs. We find that the emitters exhibit very high QEs approaching $(87 pm 7),%$ at wavelengths of $approx,580,mathrm{nm}$, which is amongst the highest QEs recorded for a solid state single photon emitter.
Hexagonal boron nitride (h-BN) is a tantalizing material for solid-state quantum engineering. Analogously to three-dimensional wide-bandgap semiconductors like diamond, h-BN hosts isolated defects exhibiting visible fluorescence, and the ability to position such quantum emitters within a two-dimensional material promises breakthrough advances in quantum sensing, photonics, and other quantum technologies. Critical to such applications, however, is an understanding of the physics underlying h-BNs quantum emission. We report the creation and characterization of visible single-photon sources in suspended, single-crystal, h-BN films. The emitters are bright and stable over timescales of several months in ambient conditions. With substrate interactions eliminated, we study the spectral, temporal, and spatial characteristics of the defects optical emission, which offer several clues about their electronic and chemical structure. Analysis of the defects spectra reveals similarities in vibronic coupling despite widely-varying fluorescence wavelengths, and a statistical analysis of their polarized emission patterns indicates a correlation between the optical dipole orientations of some defects and the primitive crystallographic axes of the single-crystal h-BN film. These measurements constrain possible defect models, and, moreover, suggest that several classes of emitters can exist simultaneously in free-standing h-BN, whether they be different defects, different charge states of the same defect, or the result of strong local perturbations.
Assembly of quantum nanophotonic systems with plasmonic resonators are important for fundamental studies of single photon sources as well as for on-chip information processing. In this work, we demonstrate controllable nanoassembly of gold nanospheres with ultra-bright quantum emitters in 2D layered hexagonal boron nitride (hBN). We utilize an atomic force microscope (AFM) tip to precisely position gold nanospheres to close proximity of the quantum emitters and observe the resulting emission enhancement and fluorescence lifetime reduction. A fluorescence enhancement of over 300% is achieved experimentally for quantum emitters in hBN, with a radiative quantum efficiency of up to 40% and a saturated count rate in excess of 5 million counts/s. Our results are promising for future employment of quantum emitters in hBN for integrated nanophotonic devices and plasmonic based nanosensors.
Combining solid state single photon emitters (SPE) with nanophotonic platforms is a key goal in integrated quantum photonics. In order to realize functionality in potentially scalable elements, suitable SPEs have to be bright, stable, and widely tunable at room temperature. In this work we show that selected SPEs embedded in a few layer hexagonal boron nitride (hBN) meet these demands. In order to show the wide tunability of these SPEs we employ an AFM with a conductive tip to apply an electrostatic field to individual hBN emitters sandwiched between the tip and an indium tin oxide coated glass slide. A very large and reversible Stark shift of $(5.5 pm 3),$nm at a zero field wavelength of $670,$nm was induced by applying just $20,$V, which exceeds the typical resonance linewidths of nanodielectric and even nanoplasmonic resonators. Our results are important to further understand the physical origin of SPEs in hBN as well as for practical quantum photonic applications where wide spectral tuning and on/off resonance switching are required.