We have performed scanning tunneling microscope (STM) and angle-resolved photoemission spectroscopy (ARPES) in Pb-deposited bilayer Graphene (BLG) on SiC(0001) substrate to investigate the dependence of the electronic structures on Pb-deposition amount. We have observed that the Pb atoms form islands by STM and the ${pi}$ bands of the BLG shift toward the Fermi level by ARPES. This hole-doping-like energy shift is enhanced as the amount of Pb is increased, and we were able to tune the Dirac gap to the Fermi level by 4 ML deposition. Considering the band dispersion, we suggest that hole-doping-like effect is related to the difference between the work functions of Pb islands and BLG/SiC; the work function of BLG/SiC is lower than that of Pb. Our results propose an easy way of band tuning for graphene with appropriate selection of both the substrate and deposited material.
Driven and non-equilibrium quantum states of matter have attracted growing interest in both theoretical and experimental studies in condensed matter physics. We review recent progress in realizing transient collective states in driven or pumped Dirac materials (DMs). In particular, we focus on optically-pumped DMs which have been theoretically proposed as a promising platform for observation of a transient excitonic instability. Optical pumping combined with the linear (Dirac) dispersion of the electronic spectrum offers a knob for tuning the effective interaction between the photoexcited electrons and holes, and thus provides a way of reducing the critical coupling for excitonic instability. As a result, a transient excitonic condensate could be achieved in a pumped DM while it is not feasible in equilibrium. We provide a unifying theoretical framework for describing transient collective states in two- and three-dimensional DMs. We describe experimental signatures of the transient excitonic state and summarize numerical estimates of the magnitude of the effect, namely the size of the dynamically-induced excitonic gaps and the values of the critical temperatures for several specific systems. We also discuss general guidelines for identifying promising material candidates.Finally, we comment recent experimental efforts in realizing transient excitonic condensate in pumped DMs and outline outstanding issues and possible future directions.
The role of defects in van der Waals heterostructures made of graphene and hexagonal boron nitride (h-BN) is studied by a combination of ab initio and model calculations. Despite the weak van der Waals interaction between layers, defects residing in h-BN, such as carbon impurities and antisite defects, reveal a hybridization with graphene p$_{rm z}$ states, leading to midgap state formation. The induced midgap states modify the transport properties of graphene and can be reproduced by means of a simple effective tight-binding model. In contrast to carbon defects, it is found that oxygen defects do not strongly hybridize with graphenes low-energy states. Instead, oxygen drastically modifies the band gap of graphene, which emerges in a commensurate stacking on h-BN lattices.
We reexamine the electronic structure of graphene on SiC substrate by angle-resolved photoemission spectroscopy. We directly observed multiply cloning of Dirac cone, in addition to ones previously attributed to reconstruction. The locations, relative distances and anisotropy of Dirac cone replicas fully agree with the moire pattern of graphene-SiC heterostructure. Our results provide a straightforward example of moire potential modulation in engineering electronic structure with Dirac fermions.
We present a combined angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations study of the electronic structure of LaAgSb$_2$ in the entire first Brillouin zone. We observe a Dirac-cone-like structure in the vicinity of the Fermi level formed by the crossing of two linear energy bands, as well as the nested segments of Fermi surface pocket emerging from the cone. Our ARPES results show the close relationship of the Dirac cone to the charge-density-wave ordering, providing consistent explanations for exotic behaviors in this material.
Artificial lattices provide a tunable platform to realize exotic quantum devices. A well-known example is artificial graphene (AG), in which electrons are confined in honeycomb lattices and behave as massless Dirac fermions. Recently, AG systems have been constructed by manipulating molecules using scanning tunnelling microscope tips, but the nanoscale size typical for these constructed systems are impossible for practical device applications and insufficient for direct investigation of the electronic structures using angle-resolved photoemission spectroscopy (ARPES). Here, we demonstrate the synthesis of macroscopic AG by self-assembly of C$_{60}$ molecules on metal surfaces. Our theoretical calculations and ARPES measurements directly confirm the existence of Dirac cones at the $K$ ($K^prime$) points of the Brillouin zone (BZ), in analogy to natural graphene. These results will stimulate ongoing efforts to explore the exotic properties in artificial lattices and provide an important step forward in the realization of novel molecular quantum devices.
Y. Tsujikawa
,M. Sakamoto
,Y. Yokoi
.
(2020)
.
"Controlling of the Dirac band states of Pb-deposited graphene by using work function difference"
.
Akari Takayama
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا