Do you want to publish a course? Click here

Control of transition frequency of a superconducting flux qubit by longitudinal coupling to the photon number degree of freedom in a resonator

77   0   0.0 ( 0 )
 Added by Hiraku Toida
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We control transition frequency of a superconducting flux qubit coupled to a frequency-tunable resonator comprising a direct current superconducting quantum interference device (dc-SQUID) by microwave driving. The dc-SQUID mediates the coupling between microwave photons in the resonator and a flux qubit. The polarity of the frequency shift depends on the sign of the flux bias for the qubit and can be both positive and negative. The absolute value of the frequency shift becomes larger by increasing the photon number in the resonator. These behaviors are reproduced by a model considering the magnetic interaction between the flux qubit and dc-SQUID. The tuning range of the transition frequency of the flux qubit reaches $approx$ 1.9 GHz, which is much larger than the ac Stark/Lamb shift observed in the dispersive regime using typical circuit quantum electrodynamics devices.



rate research

Read More

Metamaterial resonant structures made from arrays of superconducting lumped circuit elements can exhibit microwave mode spectra with left-handed dispersion, resulting in a high density of modes in the same frequency range where superconducting qubits are typically operated, as well as a bandgap at lower frequencies that extends down to dc. Using this novel regime for multi-mode circuit quantum electrodynamics, we have performed a series of measurements of such a superconducting metamaterial resonator coupled to a flux-tunable transmon qubit. Through microwave measurements of the metamaterial, we have observed the coupling of the qubit to each of the modes that it passes through. Using a separate readout resonator, we have probed the qubit dispersively and characterized the qubit energy relaxation as a function of frequency, which is strongly affected by the Purcell effect in the presence of the dense mode spectrum. Additionally, we have investigated the ac Stark shift of the qubit as the photon number in the various metamaterial modes is varied. The ability to tailor the dense mode spectrum through the choice of circuit parameters and manipulate the photonic state of the metamaterial through interactions with qubits makes this a promising platform for analog quantum simulation and quantum memories.
The textit{heavy-fluxonium} circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the half-flux frustration point. However, the suppressed charge matrix elements and low transition frequency have made it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout, that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to initialize the qubit with $97$% fidelity, corresponding to cooling it to $190~mathrm{mu K}$. We realize high-fidelity control using a universal set of single-cycle flux gates, which are comprised of directly synthesizable fast pulses, while plasmon-assisted readout is used for measurements. On a qubit with $T_1, T_{2e}sim$~300~$mathrm{mu s}$, we realize single-qubit gates in $20-60$~ns with an average gate fidelity of $99.8%$ as characterized by randomized benchmarking.
We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency and temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical predictions; in particular we experimentally observe the phenomenon of quantum heating.
Electron-spin nitrogen-vacancy color centers in diamond are a natural candidate to act as a quantum memory for superconducting qubits because of their large collective coupling and long coherence times. We report here the first demonstration of strong coupling and coherent exchange of a single quantum of energy between a flux-qubit and an ensemble of nitrogen-vacancy color centers.
We propose an experimentally realizable hybrid quantum circuit for achieving a strong coupling between a spin ensemble and a transmission-line resonator via a superconducting flux qubit used as a data bus. The resulting coupling can be used to transfer quantum information between the spin ensemble and the resonator. In particular, in contrast to the direct coupling without a data bus, our approach requires far less spins to achieve a strong coupling between the spin ensemble and the resonator (e.g., three to four orders of magnitude less). This proposed hybrid quantum circuit could enable a long-time quantum memory when storing information in the spin ensemble, and allows the possibility to explore nonlinear effects in the ultrastrong-coupling regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا