Do you want to publish a course? Click here

Modeling Route Choice with Real-Time Information: Comparing the Recursive and Non-Recursive Models

142   0   0.0 ( 0 )
 Added by Xinlian Yu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the routing policy choice problems in a stochastic time-dependent (STD) network. A routing policy is defined as a decision rule applied at the end of each link that maps the realized traffic condition to the decision on the link to take next. Two types of routing policy choice models are formulated with perfect online information (POI): recursive logit model and non-recursive logit model. In the non-recursive model, a choice set of routing policies between an origin-destination (OD) pair is generated, and a probabilistic choice is modeled at the origin, while the choice of the next link at each link is a deterministic execution of the chosen routing policy. In the recursive model, the probabilistic choice of the next link is modeled at each link, following the framework of dynamic discrete choice models. The two models are further compared in terms of computational efficiency in estimation and prediction, and flexibility in systematic utility specification and modeling correlation.



rate research

Read More

A selfcontained proof of the KAM theorem in the Thirring model is discussed, completely relaxing the ``strong diophantine property hypothesis used in previous papers. Keywords: it KAM, invariant tori, classical mechanics, perturbation theory, chaos
Real-time simulation enables the understanding of system operating conditions by evaluating simulation models of physical components running synchronized at the real-time wall clock. Leveraging the real-time measurements of comprehensive system models, faster than real-time (FTRT) simulation allows the evaluation of system architectures at speeds faster than real-time. FTRT simulation can assist in predicting the systems behavior efficiently, thus assisting the operation of system processes. Namely, the provided acceleration can be used for improving system scheduling, assessing system vulnerabilities, and predicting system disruptions in real-time systems. The acceleration of simulation times can be achieved by utilizing digital real-time simulators (RTS) and high-performance computing (HPC) architectures. FTRT simulation has been widely used, among others, for the operation, design, and investigation of power system events, building emergency management plans, wildfire prediction, etc. In this paper, we review the existing literature on FTRT simulation and its applications in different disciplines, with a particular focus on power systems. We present existing system modeling approaches, simulation tools and computing frameworks, and stress the importance of FTRT accuracy.
Moving parcels from origin to destination should not require a lot of re-planning. However, the vast number of shipments and destinations, which need to be re-aligned in real-time due to various external factors makes the delivery process a complex issue to tackle. Anticipating the impact of external factors though can provide more robust logistic plans which are resilient to changes. The work described in this paper, was carried out in the EU-funded COG-LO project and addresses the issue of parcel delivery across the road network making use of context-awareness information as an input for the optimization operations. A positive impact derived from the implementation of these services is expected due to complex event detection, context awareness and decision support at both local and global level of logistics operations.
Redundant robots are desired to execute multitasks with different priorities simultaneously. The task priorities are necessary to be transitioned for complex task scheduling of whole-body control (WBC). Many methods focused on guaranteeing the control continuity during task priority transition, however either increased the computation consumption or sacrificed the accuracy of tasks inevitably. This work formulates the WBC problem with task priority transition as an Hierarchical Quadratic Programming (HQP) with Recursive Hierarchical Projection (RHP) matrices. The tasks of each level are solved recursively through HQP. We propose the RHP matrix to form the continuously changing projection of each level so that the task priority transition is achieved without increasing computation consumption. Additionally, the recursive approach solves the WBC problem without losing the accuracy of tasks. We verify the effectiveness of this scheme by the comparative simulations of the reactive collision avoidance through multi-tasks priority transitions.
The topic of this paper is the design of a fully distributed and real-time capable control scheme for the automation of road intersections. State of the art Vehicle-to-Vehicle (V2V) communication technology is adopted. Vehicles distributively negotiate crossing priorities by a Consensus-Based Auction Algorithm (CBAA-M). Then, each agent solves a nonlinear Model Predictive Control (MPC) problem that computes the optimal trajectory avoiding collisions with higher priority vehicles and deciding the crossing order. The scheme is shown to be real-time capable and able to respond to sudden priority changes, e.g. if a vehicle gets an emergency call. Simulations reinforce theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا