Do you want to publish a course? Click here

Origin and Large Enhancement of Large Spin Hall Angle in Weyl Semimetals LaAl$X$ ($X$=Si, Ge)

130   0   0.0 ( 0 )
 Added by Truman Ng
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the origin of the strong spin Hall effect (SHE) in a recently discovered family of Weyl semimetals, LaAl$X$ ($X$=Si, Ge) via a first-principles approach with maximally localized Wannier functions. We show that the strong intrinsic SHE in LaAl$X$ originates from the multiple slight anticrossings of nodal lines and points near $E_F$ due to their high mirror symmetry and large spin-orbit interaction. It is further found that both electrical and thermal means can enhance the spin Hall conductivity ($sigma_{SH}$). However, the former also increases the electrical conductivity ($sigma_{c}$), while the latter decreases it. As a result, the independent tuning of $sigma_{SH}$ and $sigma_{c}$ by thermal means can enhance the spin Hall angle (proportional to $frac{sigma_{SH}}{sigma_{c}}$), a figure of merit of charge-to-spin current interconversion of spin-orbit torque devices. The underlying physics of such independent changes of the spin Hall and electrical conductivity by thermal means is revealed through the band-resolved and $k$-resolved spin Berry curvature. Our finding offers a new way in the search of high SHA materials for room-temperature spin-orbitronics applications.



rate research

Read More

The thermoelectric properties of conductors with low electron density can be altered significantly by an applied magnetic field. For example, recent work has shown that Dirac/Weyl semimetals with a single pocket of carriers can exhibit a large enhancement of thermopower when subjected to a sufficiently large field that the system reaches the extreme quantum limit, in which only a single Landau level is occupied. Here we study the magnetothermoelectric properties of compensated semimetals, for which pockets of electron- and hole-type carriers coexist at the Fermi level. We show that, when the compensation is nearly complete, such systems exhibit a huge enhancement of thermopower starting at a much smaller magnetic field, such that $omega_ctau > 1$, and the stringent conditions associated with the extreme quantum limit are not necessary. We discuss our results in light of recent measurements on the compensated Weyl semimetal tantalum phosphide, in which an enormous magnetothermoelectric effect was observed. We also calculate the Nernst coefficient of compensated semimetals, and show that it exhibits a maximum value with increasing magnetic field that is much larger than in the single band case. In the dissipationless limit, where the Hall angle is large, the thermoelectric response can be described in terms of quantum Hall edge states, and we use this description to generalize previous results to the multi-band case.
Weyl semimetals are characterized by unconventional electromagnetic response. We present analytical expressions for all components of the frequency- and wave-vector-dependent charge-spin linear-response tensor of Weyl fermions. The spin-momentum locking of the Weyl Hamiltonian leads to a coupling between charge and longitudinal spin fluctuations, while transverse spin fluctuations remain decoupled from the charge. A real Weyl semimetal with multiple Weyl nodes can show this charge-spin coupling in equilibrium if its crystal symmetry is sufficiently low. All Weyl semimetals are expected to show this coupling if they are driven into a non-equilibrium stationary state with different occupations of Weyl nodes, for example by exploiting the chiral anomaly. Based on the response tensor, we investigate the low-energy collective excitations of interacting Weyl fermions. For a local Hubbard interaction, the charge-spin coupling leads to a dramatic change of the zero-sound dispersion: its velocity becomes independent of the interaction strength and the chemical potential and is given solely by the Fermi velocity. In the presence of long-range Coulomb interactions, the coupling transforms the plasmon modes into spin plasmons. For real Weyl semimetals with multiple Weyl nodes, the collective modes are strongly affected by the presence of parallel static electric and magnetic fields, due to the chiral anomaly. In particular, the zero-sound frequency at fixed momentum and the spin content of the spin plasmons go through cusp singularities as the chemical potential of one of the Weyl cones is tuned through the Weyl node. We discuss possible experiments that could provide smoking-gun evidence for Weyl physics.
130 - Veljko Zlatic 2005
The evolution of the thermopower EuCu{2}(Ge{1-x}Si{x}){2} intermetallics, which is induced by the Si-Ge substitution, is explained by the Kondo scattering of conduction electrons on the Eu ions which fluctuate between the magnetic 2+ and non-magnetic 3+ Hunds rule configurations. The Si-Ge substitution is equivalent to chemical pressure which modifies the coupling and the relative occupation of the {it f} and conduction states.
Weyl semimetals expand research on topologically protected transport by adding bulk Berry monopoles with linearly dispersing electronic states and topologically robust, gapless surface Fermi arcs terminating on bulk node projections. Here, we show how the Nernst effect, combining entropy with charge transport, gives a unique signature for the presence of Dirac bands. The Nernst thermopower of NbP (maximum of 800 microV K-1 at 9 T, 109 K) exceeds its conventional thermopower by a hundredfold and is significantly larger than the thermopower of traditional thermoelectric materials. The Nernst effect has a pronounced maximum near T_M=90 +/- 20 K=mu_0/kB (mu_0 is chemical potential at T=0 K). A self-consistent theory without adjustable parameters shows that this results from electrochemical potential pinning to the Weyl point energy at T>=TM, driven by charge neutrality and Dirac band symmetry. Temperature and field dependences of the Nernst effect, an even function of the charge polarity, result from the intrinsically bipolar nature of the Weyl fermions. Through this study, we offer an understanding of the temperature dependence of the position of the electrochemical potential vis-a-vis the Weyl point, and we show a direct connection between topology and the Nernst effect, a potentially robust experimental tool for investigating topological states and the chiral anomaly.
Theory of light absorption and circular photocurrent in Weyl semimetals is developed for arbitrary large light intensities with account for both elastic and inelastic relaxation processes of Weyl fermions. The direct optical transition rate is shown to saturate at large intensity, and the saturation behaviour depends on the light polarization and on the ratio of the elastic and inelastic relaxation times. The linear-circular dichroism in absorption is shown to exceed 10~% at intermediate light wave amplitudes and fast energy relaxation. At large intensity $I$, the light absorption coefficient drops as $1/sqrt{I}$, and the circular photogalvanic current increases as $sqrt{I}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا