Do you want to publish a course? Click here

Physics potential of timing layers in future collider detectors

54   0   0.0 ( 0 )
 Added by Sergei Chekanov V.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The physics potential of timing layers with a few tens of pico-second resolution in the calorimeters of future collider detectors is explored. These studies show how such layers can be used for particle identification and illustrate the potential for detecting new event signatures originating from physics beyond the standard model.



rate research

Read More

The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $mathrm{mathbf{mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $mathbf{e^+ e^-}$ collider.
Detectors at future e+e- collider need special calorimeters in the very forward region for a fast estimate and precise measurement of the luminosity, to improve the hermeticity and mask the central tracking detectors from backscattered particles. Design optimized for the ILC collider using Monte Carlo simulations is presented. Sensor prototypes have been produced and dedicated FE ASICs have been developed and tested. For the first time, sensors have been connected to the front-end and ADC ASICs and tested in an electron beam. Results on the performance are discussed.
We report the status of R&D on large triple-GEM detectors for a forward tracker (FT) in an experiment at a future Electron Ion Collider (EIC) that will improve our understanding of QCD. We have designed a detector prototype specifically targeted for the EIC-FT, which has a trapezoidal shape with 30.1 degrees opening angle. We are investigating different detector assembly techniques and signal readout technologies, but have designed a common GEM foil to minimize NRE cost for foil production. The assembly techniques comprise either a purely mechanical method including foil stretching as pioneered by CMS but with certain modifications, or gluing foils to frames that are then assembled mechanically, or gluing foils to frames that are then glued together. The first two assembly techniques allow for re-opening chambers so that a GEM foil can be replaced if it is damaged. For readout technologies, we are pursuing a cost-effective one-dimensional readout with wide zigzag strips that maintains reasonable spatial resolution, as well two-dimensional readouts - one with stereo-angle (u-v) strips and another with r-phi strips. In addition, we aim at an overall low-mass detector design to facilitate good energy resolution for electrons scattered at low momenta. We present design for GEM foils and other detector parts, which we plan to entirely acquire from U.S. companies.
33 - Maxim Titov 2020
The physics goals of high luminosity particle accelerators, from LHC to HL-LHC and to the next generation of lepton colliders, have set quite stringent constraints on the future needs at the Instrumentation Frontier. Many technologies are reaching their sensitivity limit and new approaches need to be developed to overcome the currently irreducible technological challenges. The timescales spanned by future projects in particle physics, ranging from few years to many decades, constitute a challenge in itself, in addition to the complexity and diversity of the required accelerator and detector R&D. This paper summarizes advances and recent trends in the instrumentation techniques for particle physics experiments, largely based on the presentations given at the International Conference Instrumentation for Colliding Beam Physics (INSTR-20), held at BINP Novosibirsk, Russia, from 24 to 28 February, 2020.
Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We discuss the tests of the first three 18x18 cm$^2$ layers segmented into 1024 pixels of the technological prototype of the silicon-tungsten electromagnetic calorimeter for a future $e^+e^-$ collider. The tests have beem performed in November 2015 at CERN SPS beam line.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا