Do you want to publish a course? Click here

R&D on GEM Detectors for Forward Tracking at a Future Electron-Ion Collider

87   0   0.0 ( 0 )
 Added by Aiwu Zhang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the status of R&D on large triple-GEM detectors for a forward tracker (FT) in an experiment at a future Electron Ion Collider (EIC) that will improve our understanding of QCD. We have designed a detector prototype specifically targeted for the EIC-FT, which has a trapezoidal shape with 30.1 degrees opening angle. We are investigating different detector assembly techniques and signal readout technologies, but have designed a common GEM foil to minimize NRE cost for foil production. The assembly techniques comprise either a purely mechanical method including foil stretching as pioneered by CMS but with certain modifications, or gluing foils to frames that are then assembled mechanically, or gluing foils to frames that are then glued together. The first two assembly techniques allow for re-opening chambers so that a GEM foil can be replaced if it is damaged. For readout technologies, we are pursuing a cost-effective one-dimensional readout with wide zigzag strips that maintains reasonable spatial resolution, as well two-dimensional readouts - one with stereo-angle (u-v) strips and another with r-phi strips. In addition, we aim at an overall low-mass detector design to facilitate good energy resolution for electrons scattered at low momenta. We present design for GEM foils and other detector parts, which we plan to entirely acquire from U.S. companies.



rate research

Read More

Detectors at future e+e- collider need special calorimeters in the very forward region for a fast estimate and precise measurement of the luminosity, to improve the hermeticity and mask the central tracking detectors from backscattered particles. Design optimized for the ILC collider using Monte Carlo simulations is presented. Sensor prototypes have been produced and dedicated FE ASICs have been developed and tested. For the first time, sensors have been connected to the front-end and ADC ASICs and tested in an electron beam. Results on the performance are discussed.
Particle IDentification (PID) is a central requirement of the experiments at the future EIC. Hadron PID at high momenta by RICH techniques requires the use of low density gaseous radiators, where the challenge is the limited length of the radiator region available at a collider experiment. By selecting a photon wavelength range in the far UV domain, around 120 nm, the number of detectable photons can be increased. Ideal sensors are gaseous Photon Detectors (PD) with CsI photocathode, where the status of the art is represented by the MPGD-based PDs at COMPASS RICH. Detector optimization is required for the application at EIC. Here we report about a dedicated prototype where the sensor pad-size has been reduced to preserve the angular resolution. A new DAQ system based on the SRS readout electronics has been developed for the laboratory and test beam studies of the prototype.
443 - A. Tripathy , P. K Sahu , S. Swain 2021
A systematic study is performed to measure the ion backflow fraction of the GEM detectors. The effects of different voltage configurations and Ar/CO_2 gas mixtures, in ratios of 70:30, 80:20 and 90:10, on positive ion fraction are investigated in detail. Moreover, a comparative study is performed between single and quadruple GEM detectors.The ion current with detector effective gain is measured with various field configurations and with three proportions of gas mixtures. The ion backflow fraction for the GEM is substantially reduced with the lower drift field. A minimum ion backflow fraction of 18 % is achieved in the single GEM detector with Ar/CO_2 80:20 gas mixture, however, a minimum ion backflow fraction of 3.5 %, 3.0%, and 3.8 % are obtained for a drift field of 0.1kV/cm with Ar/CO_2 70:30, 80:20 and 90:10 gas mixtures, respectively for quadrupole GEM detector. Similar values of effective gain and ion backflow fraction have been found by calculating the current from pulse height spectrum method, obtained in the Multi Channel Analyser.
83 - M. Posik , B. Surrow 2015
Many experiments are currently using or proposing to use large area GEM foils in their detectors, which is creating a need for commercially available GEM foils. Currently CERN is the only main distributor of GEM foils, however with the growing interest in GEM technology keeping up with the increasing demand for GEM foils will be difficult. Thus the commercialization of GEM foils has been established by Tech-Etch Inc. of Plymouth, MA, USA using the single-mask technique, which is capable of producing GEM foils over a meter long. To date Tech-Etch has successfully manufactured 10 $times$ 10 cm$^2$ and 40 $times$ 40 cm$^2$ GEM foils. We will report on the electrical and geometrical properties, along with the inner and outer hole diameter size uniformity of these foils. Furthermore, Tech-Etch has now begun producing even larger GEM foils of 50 $times$ 50 cm$^2$, and are currently looking into how to accommodate GEM foils on the order of one meter long. The Tech-Etch foils were found to have excellent electrical properties. The measured mean optical properties were found to reflect the desired parameters and are consistent with those measured in double-mask GEM foils, as well as single-mask GEM foils produced at CERN. They also show good hole diameter uniformity over the active area.
The quantitative knowledge of heavy nucleis partonic structure is currently limited to rather large values of momentum fraction $x$ -- robust experimental constraints below $x sim 10^{-2}$ at low resolution scale $Q^2$ are particularly scarce. This is in sharp contrast to the free protons structure which has been probed in deep inelastic scattering (DIS) measurements down to $x sim 10^{-5}$ at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-$x$ region in much greater detail. In the present paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear effects at low $Q^2$. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا