No Arabic abstract
As generation Zs big data is flooding the Internet through social nets, neural network based data processing is turning an important cornerstone, showing significant potential for fast extraction of data patterns. Online course delivery and associated tutoring are transforming into customizable, on-demand services driven by the learner. Besides automated grading, strong potential exists for the development and deployment of next generation intelligent tutoring software agents. Self-adaptive, online tutoring agents exhibiting intelligent-like behavior, being capable to learn from the learner, will become the next educational superstars. Over the past decade, computer-based tutoring agents were deployed in a variety of extended reality environments, from patient rehabilitation to psychological trauma healing. Most of these agents are driven by a set of conditional control statements and a large answers/questions pairs dataset. This article provides a brief introduction on Generation Zs addiction to digital information, highlights important efforts for the development of intelligent dialogue systems, and explains the main components and important design decisions for Intelligent Tutoring System.
An Intelligent Tutoring System (ITS) has been shown to improve students learning outcomes by providing a personalized curriculum that addresses individual needs of every student. However, despite the effectiveness and efficiency that ITS brings to students learning process, most of the studies in ITS research have conducted less effort to design the interface of ITS that promotes students interest in learning, motivation and engagement by making better use of AI features. In this paper, we explore AI-driven design for the interface of ITS describing diagnostic feedback for students problem-solving process and investigate its impacts on their engagement. We propose several interface designs powered by different AI components and empirically evaluate their impacts on student engagement through Santa, an active mobile ITS. Controlled A/B tests conducted on more than 20K students in the wild show that AI-driven interface design improves the factors of engagement by up to 25.13%.
In the context of building an intelligent tutoring system (ITS), which improves student learning outcomes by intervention, we set out to improve prediction of student problem outcome. In essence, we want to predict the outcome of a student answering a problem in an ITS from a video feed by analyzing their face and gestures. For this, we present a novel transfer learning facial affect representation and a user-personalized training scheme that unlocks the potential of this representation. We model the temporal structure of video sequences of students solving math problems using a recurrent neural network architecture. Additionally, we extend the largest dataset of student interactions with an intelligent online math tutor by a factor of two. Our final model, coined ATL-BP (Affect Transfer Learning for Behavior Prediction) achieves an increase in mean F-score over state-of-the-art of 45% on this new dataset in the general case and 50% in a more challenging leave-users-out experimental setting when we use a user-personalized training scheme.
Learning to play an instrument is intrinsically multimodal, and we have seen a trend of applying visual and haptic feedback in music games and computer-aided music tutoring systems. However, most current systems are still designed to master individual pieces of music; it is unclear how well the learned skills can be generalized to new pieces. We aim to explore this question. In this study, we contribute Interactive Rainbow Score, an interactive visual system to boost the learning of sight-playing, the general musical skill to read music and map the visual representations to performance motions. The key design of Interactive Rainbow Score is to associate pitches (and the corresponding motions) with colored notation and further strengthen such association via real-time interactions. Quantitative results show that the interactive feature on average increases the learning efficiency by 31.1%. Further analysis indicates that it is critical to apply the interaction in the early period of learning.
The opaque nature of many intelligent systems violates established usability principles and thus presents a challenge for human-computer interaction. Research in the field therefore highlights the need for transparency, scrutability, intelligibility, interpretability and explainability, among others. While all of these terms carry a vision of supporting users in understanding intelligent systems, the underlying notions and assumptions about users and their interaction with the system often remain unclear. We review the literature in HCI through the lens of implied user questions to synthesise a conceptual framework integrating user mindsets, user involvement, and knowledge outcomes to reveal, differentiate and classify current notions in prior work. This framework aims to resolve conceptual ambiguity in the field and enables researchers to clarify their assumptions and become aware of those made in prior work. We thus hope to advance and structure the dialogue in the HCI research community on supporting users in understanding intelligent systems.
This paper describes how home appliances might be enhanced to improve user awareness of energy usage. Households wish to lead comfortable and manageable lives. Balancing this reasonable desire with the environmental and political goal of reducing electricity usage is a challenge that we claim is best met through the design of interfaces that allows users better control of their usage and unobtrusively informs them of the actions of their peers. A set of design principles along these lines is formulated in this paper. We have built a fully functional prototype home appliance with a socially aware interface to signal the aggregate usage of the users peer group according to these principles, and present the prototype in the paper.