No Arabic abstract
Skyrmion is a topologically protected spin texture excited in magnetic thin films. The radii of skyrmions are typically 10-100 nm. Because of the size, the skyrmion is expected to be a candidate for memory and novel-device usages. To realize the futuristic devices that will be using the skyrmion circuit, the tracks which guide the motion of skyrmions are needed. The tracks patterned with differences in the magnetic-anisotropy energy are well-paved without a potential pocket, whereas the tracks carved out of magnetic films have the potential pockets at corners due to the demagnetizing field. Therefore, the tracks patterned with the magnetic anisotropy plays a key role in making the skyrmion circuits. The experiment along this idea has been conducted for the hub and bent tracks. However, we have little known the motion of skyrmions in these tracks. This work aims to identify the forces acting between skyrmions and walls of the tracks. The static force on a skyrmion can be expressed as minus the gradient of the potential energy caused by the magnetic-anisotropy undulation. The potential can be estimated numerically, modeling the shape of skyrmions with their radii and domain wall widths. We find that the forces depend not only on the distance from the wall but also on the shape of skyrmions. We have also performed micromagnetic simulations where the Magnus force and the acceleration by the magnetic-anisotropy gradient are taken into account as well as the force by the walls. The simulation results show good agreement with those calculated from the modeled skyrmions.
Skyrmions are emerging topological spin structures that are potentially revolutionary for future data storage and spintronics applications. The existence and stability of skyrmions in magnetic materials is usually associated to the presence of the Dzyaloshinskii-Moriya interaction (DMI) in bulk magnets or in magnetic thin films lacking inversion symmetry. While some methods have already been proposed to generate isolated skyrmions in thin films with DMI, a thorough study of the conditions under which the skyrmions will remain stable in order to be manipulated in an integrated spintronic device are still an open problem. The stability of such structures is believed to be a result of ideal combinations of perpendicular magnetic anisotropy (PMA), DMI and the interplay between geometry and magnetostatics. In the present work we show some micromagnetic results supporting previous experimental observations of magnetic skyrmions in spin-valve stacks with a wide range of DMI values. Using micromagnetic simulations of cobalt-based disks, we obtain the magnetic ground state configuration for several values of PMA, DMI and geometric parameters. Skyrmion numbers, corresponding to the topological charge, are calculated in all cases and confirm the occurrence of isolated, stable, axially symmetric skyrmions for several combinations of DMI and anisotropy constant. The stability of the skyrmions in disks is then investigated under magnetic field and spin-polarized current, in finite temperature, highlighting the limits of applicability of these spin textures in spintronic devices.
Magnetic skyrmions are exciting candidates for energy-efficient computing due to their non-volatility, detectability,and mobility. A recent proposal within the paradigm of reversible computing enables large-scale circuits composed ofdirectly-cascaded skyrmion logic gates, but it is limited by the manufacturing difficulty and energy costs associated withthe use of notches for skyrmion synchronization. To overcome these challenges, we therefore propose a skyrmion logicsynchronized via modulation of voltage-controlled magnetic anisotropy (VCMA). In addition to demonstrating theprinciple of VCMA synchronization through micromagnetic simulations, we also quantify the impacts of current den-sity, skyrmion velocity, and anisotropy barrier height on skyrmion motion. Further micromagnetic results demonstratethe feasibility of cascaded logic circuits in which VCMA synchronizers enable clocking and pipelining, illustrating afeasible pathway toward energy-efficient large-scale computing systems based on magnetic skyrmions.
Quantum confinement of graphene Dirac-like electrons in artificially crafted nanometer structures is a long sought goal that would provide a strategy to selectively tune the electronic properties of graphene, including bandgap opening or quantization of energy levels However, creating confining structures with nanometer precision in shape, size and location, remains as an experimental challenge, both for top-down and bottom-up approaches. Moreover, Klein tunneling, offering an escape route to graphene electrons, limits the efficiency of electrostatic confinement. Here, a scanning tunneling microscope (STM) is used to create graphene nanopatterns, with sub-nanometer precision, by the collective manipulation of a large number of H atoms. Individual graphene nanostructures are built at selected locations, with predetermined orientations and shapes, and with dimensions going all the way from 2 nanometers up to 1 micron. The method permits to erase and rebuild the patterns at will, and it can be implemented on different graphene substrates. STM experiments demonstrate that such graphene nanostructures confine very efficiently graphene Dirac quasiparticles, both in zero and one dimensional structures. In graphene quantum dots, perfectly defined energy band gaps up to 0.8 eV are found, that scale as the inverse of the dots linear dimension, as expected for massless Dirac fermions
The uniform motion of chiral magnetic skyrmions induced by a spin-transfer torque displays an intricate dependence on the skyrmions topological charge and shape. We reveal surprising patterns in this dependence through simulations of the Landau-Lifshitz-Gilbert equation with Zhang-Li torque and explain them through a geometric analysis of Thieles equation. In particular, we show that the velocity distribution of topologically non-trivial skyrmions depends on their symmetry: it is a single circle for skyrmions of high symmetry and a family of circles for low-symmetry configurations. We also show that the velocity of the topologically trivial skyrmions, previously believed to be the fastest objects, can be surpassed, for instance, by antiskyrmions. The generality of our approach suggests the validity of our results for exchange frustrated magnets, bubble materials, and others.
We demonstrate patterned growth of epitaxial yttrium iron garnet (YIG) thin films using lithographically defined templates on gadolinium gallium garnet (GGG) substrates. The fabricated YIG nanostructures yield the desired crystallographic orientation, excellent surface morphology, and narrow ferromagnetic resonance (FMR) linewidth (~ 4 Oe). Shape-induced magnetic anisotropy is clearly observed in a patterned array of nanobars engineered to exhibit the larger coercivity (40 Oe) compared with that of continuous films. Both hysteresis loop and angle-dependent FMR spectra measurements indicate that the easy axis aligns along the longitudinal direction of the nanobars, with an effective anisotropy field of 195 Oe. Our work overcomes difficulties in patterning YIG thin films and provides an effective means to control their magnetic properties and magnetic bias conditions.