No Arabic abstract
We demonstrate patterned growth of epitaxial yttrium iron garnet (YIG) thin films using lithographically defined templates on gadolinium gallium garnet (GGG) substrates. The fabricated YIG nanostructures yield the desired crystallographic orientation, excellent surface morphology, and narrow ferromagnetic resonance (FMR) linewidth (~ 4 Oe). Shape-induced magnetic anisotropy is clearly observed in a patterned array of nanobars engineered to exhibit the larger coercivity (40 Oe) compared with that of continuous films. Both hysteresis loop and angle-dependent FMR spectra measurements indicate that the easy axis aligns along the longitudinal direction of the nanobars, with an effective anisotropy field of 195 Oe. Our work overcomes difficulties in patterning YIG thin films and provides an effective means to control their magnetic properties and magnetic bias conditions.
The magnetic state of heavy metal Pt thin films in proximity to the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$ has been investigated systematically by means of x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity measurements combined with angle-dependent magnetotransport studies. To reveal intermixing effects as the possible cause for induced magnetic moments in Pt, we compare thin film heterostructures with different order of the layer stacking and different interface properties. For standard Pt layers on Y$_{3}$Fe$_{5}$O$_{12}$ thin films, we do not detect any static magnetic polarization in Pt. These samples show an angle-dependent magnetoresistance behavior, which is consistent with the established spin Hall magnetoresistance. In contrast, for the inverted layer sequence, Y$_{3}$Fe$_{5}$O$_{12}$ thin films grown on Pt layers, Pt displays a finite induced magnetic moment comparable to that of all-metallic Pt/Fe bilayers. This magnetic moment is found to originate from finite intermixing at the Y$_{3}$Fe$_{5}$O$_{12}$/Pt interface. As a consequence, we found a complex angle-dependent magnetoresistance indicating a superposition of the spin Hall and the anisotropic magnetoresistance in these type of samples. Both effects can be disentangled from each other due to their different angle dependence and their characteristic temperature evolution.
Ferrimagnetic Y$_3$Fe$_5$O$_{12}$ (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with other rare earth elements that have a net magnetic moment, we can introduce an additional spin degree of freedom. Here, we study the magnetic coupling in epitaxial Y$_3$Fe$_5$O$_{12}$/Gd$_3$Fe$_5$O$_{12}$ (YIG/GIG) heterostructures grown by pulsed laser deposition. From bulk sensitive magnetometry and surface sensitive spin Seebeck effect (SSE) and spin Hall magnetoresistance (SMR) measurements, we determine the alignment of the heterostructure magnetization through temperature and external magnetic field. The ferromagnetic coupling between the Fe sublattices of YIG and GIG dominates the overall behavior of the heterostructures. Due to the temperature dependent gadolinium moment, a magnetic compensation point of the total bilayer system can be identified. This compensation point shifts to lower temperatures with increasing thickness of YIG due the parallel alignment of the iron moments. We show that we can control the magnetic properties of the heterostructures by tuning the thickness of the individual layers, opening up a large playground for magnonic devices based on coupled magnetic insulators. These devices could potentially control the magnon transport analogously to electron transport in giant magnetoresistive devices.
Exploring new strategies to perform magnon logic is a key requirement for the further development of magnon-based spintronics. In this work, we realize a three-terminal magnon transport device to study the possibility of manipulating magnonic spin information transfer in a magnetic insulator via localized magnetic fields and heat generation. The device comprises two parallel Pt wires as well as a Cu center wire that are deposited on the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$. While the Pt wires act as spin current injector and detector, the Cu wire is used to create local magnetostatic fields and additional heat, which impact both the magnetic configuration and the magnons within the Y$_{3}$Fe$_{5}$O$_{12}$ below. We show that these factors can create a non-local signal that shows similar features as compared to an electrically induced magnon flow. Furthermore, a modulation of the spin transport signal between the Pt wires is observed, which can be partly explained by thermally excited spin currents of different polarization. Our results indicate a potential way towards the manipulation of non-local magnon signals, which could be useful for magnon logic.
Decoherence of the 795 nm $^3$H$_6$ to $^3$H$_4$ transition in 1%Tm$^{3+}$:Y$_3$Ga$_5$O$_{12}$ (Tm:YGG) is studied at temperatures as low as 1.2 K. The temperature, magnetic field, frequency, and time-scale (spectral diffusion) dependence of the optical coherence lifetime is measured. Our results show that the coherence lifetime is impacted less by spectral diffusion than other known thulium-doped materials. Photon echo excitation and spectral hole burning methods reveal uniform decoherence properties and the possibility to produce full transparency for persistent spectral holes across the entire 56 GHz inhomogeneous bandwidth of the optical transition. Temperature-dependent decoherence is well described by elastic Raman scattering of phonons with an additional weaker component that may arise from a low density of glass-like dynamic disorder modes (two-level systems). Analysis of the observed behavior suggests that an optical coherence lifetime approaching one millisecond may be possible in this system at temperatures below 1 K for crystals grown with optimized properties. Overall, we find that Tm:YGG has superior decoherence properties compared to other Tm-doped crystals and is a promising candidate for applications that rely on long coherence lifetimes, such as optical quantum memories and photonic signal processing.
Nanostructured rare-earth-ion doped materials are increasingly being investigated for on-chip implementations of quantum information processing protocols as well as commercial applications such as fluorescent lighting. However, achieving high-quality and optimized materials at the nanoscale is still challenging. Here we present a detailed study of the restriction of phonon processes in the transition from bulk crystals to small ($le$ 40 nm) nanocrystals by observing the relaxation dynamics between crystal-field levels of Tb$^{3+}$:Y$_3$Al$_5$O$_{12}$. We find that population relaxation dynamics are modified as the particle size is reduced, consistent with our simulations of inhibited relaxation through a modified vibrational density of states and hence modified phonon emission. However, our experiments also indicate that non-radiative processes not driven by phonons are also present in the smaller particles, causing transitions and rapid thermalization between the levels on a timescale of $<$100 ns.