No Arabic abstract
Excitons and trions (or exciton-polarons) in transition metal dichalcogenides (TMDs) are known to decay predominantly through intravalley transitions. Electron-hole recombination across different valleys can also play a significant role in the excitonic dynamics, but intervalley transitions are rarely observed in monolayer TMDs, because they violate the conservation of momentum. Here we reveal the intervalley recombination of dark excitons and trions through more than one path in monolayer WSe$_2$. We observe the intervalley dark excitons, which can recombine by the assistance of defect scattering or chiral-phonon emission. We also reveal that a trion can decay in two distinct paths - through intravalley or intervalley electron-hole recombination - into two different final valley states. Although these two paths are energy degenerate, we can distinguish them by lifting the valley degeneracy under a magnetic field. In addition, the intra- and inter-valley trion transitions are coupled to zone-center and zone-corner chiral phonons, respectively, to produce distinct phonon replicas. The observed multipath optical decays of dark excitons and trions provide much insight into the internal quantum structure of trions and the complex excitonic interactions with defects and chiral phonons in monolayer valley semiconductors.
Monolayer transition metal dichalcogenides offer the possibility of optical control of the valley degree of freedom. In order to asses the potential of these materials in applications, detailed knowledge of the valley dynamics is essential. In this work, we apply low temperature time-resolved photoluminescence (PL) measurements to investigate exciton valley relaxation dynamics and, in particular, its behavior under strong excitation. At the lowest excitation powers the inter valley scattering time is $simeq 50$ ps, but shortens by more than a factor of two at the highest powers. We attribute this acceleration to either heating of the exciton system or the presence of a dense exciton gas, which could influence the exciton valley properties. Furthermore, we analyze the PL dynamics of excitons and trions. We find that the PL decays for all peaks are bi-exponential and approximately independent of the excitation power. We attribute the short decay to radiative recombination and escape to a reservoir of dark states. The long decay is ascribed to a transfer of excitons back from the reservoir. For the first time, we evaluate the exciton PL decay time of $simeq$ 10 ps. The latter process is valley-conserving and occurs on a timescale of $simeq$ 50 ps.
Charged excitons, or X$^{pm}$-trions, in monolayer transition metal dichalcogenides have binding energies of several tens of meV. Together with the neutral exciton X$^0$ they dominate the emission spectrum at low and elevated temperatures. We use charge tunable devices based on WSe$_2$ monolayers encapsulated in hexagonal boron nitride, to investigate the difference in binding energy between X$^+$ and X$^-$ and the X$^-$ fine structure. We find in the charge neutral regime, the X$^0$ emission accompanied at lower energy by a strong peak close to the longitudinal optical (LO) phonon energy. This peak is absent in reflectivity measurements, where only the X$^0$ and an excited state of the X$^0$ are visible. In the $n$-doped regime, we find a closer correspondence between emission and reflectivity as the trion transition with a well-resolved fine-structure splitting of 6~meV for X$^-$ is observed. We present a symmetry analysis of the different X$^+$ and X$^-$ trion states and results of the binding energy calculations. We compare the trion binding energy for the $n$-and $p$-doped regimes with our model calculations for low carrier concentrations. We demonstrate that the splitting between the X$^+$ and X$^-$ trions as well as the fine structure of the X$^-$ state can be related to the short-range Coulomb exchange interaction between the charge carriers.
We report the observation and gate manipulation of intrinsic dark trions in monolayer WSe$_2$. By using ultraclean WSe$_2$ devices encapsulated by boron nitride, we directly resolve the weak photoluminescence of dark trions. The dark trions can be tuned continuously between negative and positive charged trions with electrostatic gating. We also reveal their spin triplet configuration and distinct valley optical emission by their characteristic Zeeman splitting under magnetic field. The dark trions exhibit large binding energy (14-16 meV). Their lifetime (~1.3 ns) is two orders of magnitude longer than the bright trion lifetime (~10 ps) and can be tuned between 0.4 to 1.3 ns by electrostatic gating. Such robust, optically detectable, and gate tunable dark trions provide a new path to realize electrically controllable trion transport in two-dimensional materials.
Monolayer transition metal dichalcogenides are a promising platform to investigate many-body interactions of excitonic complexes. In monolayer tungsten diselenide, the ground-state exciton is dark (spin-indirect), and the valley degeneracy allows low-energy dark momentum-indirect excitons to form. Interactions between the dark exciton species and the optically accessible bright exciton (X) are likely to play significant roles in determining the optical properties of X at high power, as well as limiting the ultimate exciton densities that can be achieved, yet so far little is known about these interactions. Here, we demonstrate long-lived dense populations of momentum-indirect intervalley ($X_K$) and spin-indirect intravalley (D) dark excitons by time-resolved photoluminescence measurements (Tr-PL). Our results uncover an efficient inter-state conversion between X to D excitons through the spin-flip process and the one between D and $X_K$ excitons mediated by the exchange interaction (D + D to $X_K$ + $X_K$). Moreover, we observe a persistent redshift of the X exciton due to strong excitonic screening by $X_K$ exciton with a response time in the timescale of sub-ns, revealing a non-trivial inter-state exciton-exciton interaction. Our results provide a new insight into the interaction between bright and dark excitons, and point to a possibility to employ dark excitons for investigating exciton condensation and the valleytronics.
Low temperature and polarization resolved magneto-photoluminescence experiments are used to investigate the properties of dark excitons and dark trions in a monolayer of WS$_2$ encapsulated in hexagonal BN (hBN). We find that this system is an $n$-type doped semiconductor and that dark trions dominate the emission spectrum. In line with previous studies on WSe$_2$, we identify the Coulomb exchange interaction coupled neutral dark and grey excitons through their polarization properties, while an analogous effect is not observed for dark trions. Applying the magnetic field in both perpendicular and parallel configurations with respect to the monolayer plane, we determine the g-factor of dark trions to be $gsim$-8.6. Their decay rate is close to 0.5 ns, more than 2 orders of magnitude longer than that of bright excitons.