Do you want to publish a course? Click here

Intervalley scattering of excitons and trions in monolayer WSe$_{2}$ under strong excitation

164   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Monolayer transition metal dichalcogenides offer the possibility of optical control of the valley degree of freedom. In order to asses the potential of these materials in applications, detailed knowledge of the valley dynamics is essential. In this work, we apply low temperature time-resolved photoluminescence (PL) measurements to investigate exciton valley relaxation dynamics and, in particular, its behavior under strong excitation. At the lowest excitation powers the inter valley scattering time is $simeq 50$ ps, but shortens by more than a factor of two at the highest powers. We attribute this acceleration to either heating of the exciton system or the presence of a dense exciton gas, which could influence the exciton valley properties. Furthermore, we analyze the PL dynamics of excitons and trions. We find that the PL decays for all peaks are bi-exponential and approximately independent of the excitation power. We attribute the short decay to radiative recombination and escape to a reservoir of dark states. The long decay is ascribed to a transfer of excitons back from the reservoir. For the first time, we evaluate the exciton PL decay time of $simeq$ 10 ps. The latter process is valley-conserving and occurs on a timescale of $simeq$ 50 ps.



rate research

Read More

Excitons and trions (or exciton-polarons) in transition metal dichalcogenides (TMDs) are known to decay predominantly through intravalley transitions. Electron-hole recombination across different valleys can also play a significant role in the excitonic dynamics, but intervalley transitions are rarely observed in monolayer TMDs, because they violate the conservation of momentum. Here we reveal the intervalley recombination of dark excitons and trions through more than one path in monolayer WSe$_2$. We observe the intervalley dark excitons, which can recombine by the assistance of defect scattering or chiral-phonon emission. We also reveal that a trion can decay in two distinct paths - through intravalley or intervalley electron-hole recombination - into two different final valley states. Although these two paths are energy degenerate, we can distinguish them by lifting the valley degeneracy under a magnetic field. In addition, the intra- and inter-valley trion transitions are coupled to zone-center and zone-corner chiral phonons, respectively, to produce distinct phonon replicas. The observed multipath optical decays of dark excitons and trions provide much insight into the internal quantum structure of trions and the complex excitonic interactions with defects and chiral phonons in monolayer valley semiconductors.
The large surface-to-volume ratio in atomically thin 2D materials allows to efficiently tune their properties through modifications of their environment. Artificial stacking of two monolayers into a bilayer leads to an overlap of layer-localized wave functions giving rise to a twist angle-dependent hybridization of excitonic states. In this joint theory-experiment study, we demonstrate the impact of interlayer hybridization on bright and momentum-dark excitons in twisted WSe$_2$ bilayers. In particular, we show that the strong hybridization of electrons at the $Lambda$ point leads to a drastic redshift of the momentum-dark K-$Lambda$ exciton, accompanied by the emergence of flat moire exciton bands at small twist angles. We directly compare theoretically predicted and experimentally measured optical spectra allowing us to identify photoluminescence signals stemming from phonon-assisted recombination of layer-hybridized dark excitons. Moreover, we predict the emergence of additional spectral features resulting from the moire potential of the twisted bilayer lattice.
We report the direct observation of intervalley exciton between the Q conduction valley and $Gamma$ valence valley in bilayer WSe$_2$ by photoluminescence. The Q$Gamma$ exciton lies at ~18 meV below the QK exciton and dominates the luminescence of bilayer WSe$_2$. By measuring the exciton spectra at gate-tunable electric field, we reveal different interlayer electric dipole moments and Stark shifts between Q$Gamma$ and QK excitons. Notably, we can use the electric field to switch the energy order and dominant luminescence between Q$Gamma$ and QK excitons. Both Q$Gamma$ and QK excitons exhibit pronounced phonon replicas, in which two-phonon replicas outshine the one-phonon replicas due to the existence of (nearly) resonant exciton-phonon scatterings and numerous two-phonon scattering paths. We can simulate the replica spectra by comprehensive theoretical modeling and calculations. The good agreement between theory and experiment for the Stark shifts and phonon replicas strongly supports our assignment of Q$Gamma$ and QK excitons.
248 - E. Courtade , M. Semina , M. Manca 2017
Charged excitons, or X$^{pm}$-trions, in monolayer transition metal dichalcogenides have binding energies of several tens of meV. Together with the neutral exciton X$^0$ they dominate the emission spectrum at low and elevated temperatures. We use charge tunable devices based on WSe$_2$ monolayers encapsulated in hexagonal boron nitride, to investigate the difference in binding energy between X$^+$ and X$^-$ and the X$^-$ fine structure. We find in the charge neutral regime, the X$^0$ emission accompanied at lower energy by a strong peak close to the longitudinal optical (LO) phonon energy. This peak is absent in reflectivity measurements, where only the X$^0$ and an excited state of the X$^0$ are visible. In the $n$-doped regime, we find a closer correspondence between emission and reflectivity as the trion transition with a well-resolved fine-structure splitting of 6~meV for X$^-$ is observed. We present a symmetry analysis of the different X$^+$ and X$^-$ trion states and results of the binding energy calculations. We compare the trion binding energy for the $n$-and $p$-doped regimes with our model calculations for low carrier concentrations. We demonstrate that the splitting between the X$^+$ and X$^-$ trions as well as the fine structure of the X$^-$ state can be related to the short-range Coulomb exchange interaction between the charge carriers.
288 - N.Lundt , E. Cherotchenko , O.Iff 2017
We study the impact of a free carrier reservoir on the optical properties of excitonic and trionic complexes in a MoSe$_2$ monolayer at cryogenic temperatures. By applying photodoping via a non-resonant pump laser the electron density can be controlled in our sample and in turn the exciton and trion densities can be tuned. We find a significant increase of the trion binding energy in the presence of an induced electron gas both in power- and in time-resolved photoluminescence spectra. This behaviour is reproduced within the original variational approach that takes into account both screening and phase space filling effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا