Do you want to publish a course? Click here

No radiative corrections to the Carroll-Field-Jackiw term beyond one-loop order

149   0   0.0 ( 0 )
 Added by Luiz Brito
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We demonstrate explicitly the absence of the quantum corrections to the Carroll-Field-Jackiw (CFJ) term beyond one-loop within the Lorentz-breaking CPT-odd extension of QED. The proof holds within two prescriptions of quantum calculations, with the axial vector in the fermion sector {}treated either as a perturbation or as a contribution in the exact propagator of the fermion field.



rate research

Read More

In this work we focus on the Carroll-Field-Jackiw (CFJ) modified electrodynamics in combination with a CPT-even Lorentz-violating contribution. We add a photon mass term to the Lagrange density and study the question whether this contribution can render the theory unitary. The analysis is based on the pole structure of the modified photon propagator as well as the validity of the optical theorem. We find, indeed, that the massive CFJ-type modification is unitary at tree-level. This result provides a further example for how a photon mass can mitigate malign behaviors.
We extend a constrained version of Implicit Regularization (CIR) beyond one loop order for gauge field theories. In this framework, the ultraviolet content of the model is displayed in terms of momentum loop integrals order by order in perturbation theory for any Feynman diagram, while the Ward-Slavnov-Taylor identities are controlled by finite surface terms. To illustrate, we apply CIR to massless abelian Gauge Field Theories (scalar and spinorial QED) to two loop order and calculate the two-loop beta-function of the spinorial QED.
135 - D. Bardin 2017
Theoretical predictions for Bhabha scattering observables are presented including complete one-loop electroweak radiative corrections. A longitudinal polarization of the initial beams is taken into account. Numerical results for the asymmetry $A_{LR}$ and the relative correction $delta$ are given for the set of the energy $E_{cm}=250, 500, 1000$~GeV with various polarization degrees.
The dimensionful nature of the coupling in the Einstein-Hilbert action in four dimensions implies that the theory is non-renormalizable; explicit calculation shows that beginning at two loop order, divergences arise that cannot be removed by renormalization without introducing new terms in the classical action. It has been shown that, by use of a Lagrange multiplier field to ensure that the classical equation of motion is satisfied in the path integral, radiative effects can be restricted to one loop order. We show that by use of such Lagrange multiplier fields, the Einstein-Hilbert action can be quantized without the occurrence of non-renormalizable divergences. We then apply this mechanism to a model in which there is in addition to the Einstein-Hilbert action, a fully covariant action for a self-interacting scalar field coupled to the metric. It proves possible to restrict loop diagrams involving internal lines involving the metric to one-loop order; diagrams in which the scalar field propagates occur at arbitrary high order in the loop expansion. This model also can be shown to be renormalizable. Incorporating spinor and vector fields in the same way as scalar fields is feasible, and so a fully covariant Standard Model with a dynamical metric field can also be shown to be renormalizable
In this paper we have analyzed the improved version of the Gauge Unfixing (GU) formalism of the massive Carroll-Field-Jackiw model, which breaks both the Lorentz and gauge invariances, to disclose hidden symmetries to obtain gauge invariance, the key stone of the Standard Model. In this process, as usual, we have converted this second-class system into a first-class one and we have obtained two gauge invariant models. We have verified that the Poisson brackets involving the gauge invariant variables, obtained through the GU formalism, coincide with the Dirac brackets between the original second-class variables of the phase space. Finally, we have obtained two gauge invariant Lagrangians where one of them represents the Stueckelberg form.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا