Do you want to publish a course? Click here

Diophantine approximation by negative continued fraction

63   0   0.0 ( 0 )
 Added by Hiroaki Ito
 Publication date 2020
  fields
and research's language is English
 Authors Hiroaki Ito




Ask ChatGPT about the research

We show that the growth rate of denominator $Q_n$ of the $n$-th convergent of negative expansion of $x$ and the rate of approximation: $$ frac{log{n}}{n}log{left|x-frac{P_n}{Q_n}right|}rightarrow -frac{pi^2}{3} quad text{in measure.} $$ for a.e. $x$. In the course of the proof, we reprove known inspiring results that arithmetic mean of digits of negative continued fraction converges to 3 in measure, although the limit inferior is 2, and the limit superior is infinite almost everywhere.



rate research

Read More

122 - J. Beck , W.W.L. Chen 2021
Consider a finite polysquare or square tiled region, a connected, but not necessarily simply-connected, polygonal region tiled with aligned unit squares. Using ideas from diophantine approximation, we prove that a half-infinite billiard orbit in such a region is superdense, a best possible form of time-quantitative density, if and only if the initial slope of the orbit is a badly approximable number. As the traditional approach to questions of density and uniformity via ergodic theory depends on results such as Birkhoffs ergodic theorem which are essentially time-qualitative in nature and do not appear to lead naturally to time-quantitative statements, we appeal to a non-ergodic approach that is based largely on number theory and combinatorics. In particular, we use the famous 3-distance theorem in diophantine approximation combined with an iterative process. This paper improves on an earlier result of the authors and Yang where it is shown that badly approximable numbers that satisfy a quite severe technical restriction on the digits of their continued fractions lead to superdensity. Here we overcome this technical impediment.
67 - Hiroki Takahasi 2019
We establish the (level-1) large deviation principles for three kinds of means associated with the backward continued fraction expansion. We show that: for the harmonic and geometric means, the rate functions vanish exactly at one point; for the arithmetic mean, it is completely degenerate, vanishing at every point in its effective domain. Our method of proof employs the thermodynamic formalism for finite Markov shifts, and a multifractal analysis for the Renyi map generating the backward continued fraction digits. We completely determine the class of unbounded arithmetic functions for which the rate functions vanish at every point in unbounded intervals.
In this paper, we represent a continued fraction expression of Mathieu series by a continued fraction formula of Ramanujan. As application, we obtain some new bounds for Mathieu series.
We compute explicitly the density of the invariant measure for the Reverse algorithm which is absolutely continuous with respect to Lebesgue measure, using a method proposed by Arnoux and Nogueira. We also apply the same method on the unsorted version of Brun algorithm and Cassaigne algorithm. We illustrate some experimentations on the domain of the natural extension of those algorithms. For some other algorithms, which are known to have a unique invariant measure absolutely continuous with respect to Lebesgue measure, the invariant domain found by this method seems to have a fractal boundary, and it is unclear that it is of positive measure.
135 - Xiaodong Cao , Xu You 2014
The main aim of this paper is to further develop the multiple-correction method that formulated in our previous works~cite{CXY, Cao}. As its applications, we establish a kind of hybrid-type finite continued fraction approximations related to BBP-type series of the constant $pi$ and other classical constants, such as Catalan constant, $pi^2$, etc.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا