Do you want to publish a course? Click here

Large deviation principle for harmonic/geometric/arithmetic mean of digits in backward continued fraction expansion

68   0   0.0 ( 0 )
 Added by Hiroki Takahasi
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We establish the (level-1) large deviation principles for three kinds of means associated with the backward continued fraction expansion. We show that: for the harmonic and geometric means, the rate functions vanish exactly at one point; for the arithmetic mean, it is completely degenerate, vanishing at every point in its effective domain. Our method of proof employs the thermodynamic formalism for finite Markov shifts, and a multifractal analysis for the Renyi map generating the backward continued fraction digits. We completely determine the class of unbounded arithmetic functions for which the rate functions vanish at every point in unbounded intervals.

rate research

Read More

62 - Hiroaki Ito 2020
We show that the growth rate of denominator $Q_n$ of the $n$-th convergent of negative expansion of $x$ and the rate of approximation: $$ frac{log{n}}{n}log{left|x-frac{P_n}{Q_n}right|}rightarrow -frac{pi^2}{3} quad text{in measure.} $$ for a.e. $x$. In the course of the proof, we reprove known inspiring results that arithmetic mean of digits of negative continued fraction converges to 3 in measure, although the limit inferior is 2, and the limit superior is infinite almost everywhere.
134 - Lulu Fang , Lei Shang 2016
Large and moderate deviation principles are proved for Engel continued fractions, a new type of continued fraction expansion with non-decreasing partial quotients in number theory.
In this paper, we represent a continued fraction expression of Mathieu series by a continued fraction formula of Ramanujan. As application, we obtain some new bounds for Mathieu series.
We present a large deviation principle for the entropy penalized Mather problem when the Lagrangian L is generic (in this case the Mather measure $mu$ is unique and the support of $mu$ is the Aubry set). Consider, for each value of $epsilon $ and h, the entropy penalized Mather problem $min {int_{tntimesrn} L(x,v)dmu(x,v)+epsilon S[mu]},$ where the entropy S is given by $S[mu]=int_{tntimesrn}mu(x,v)lnfrac{mu(x,v)}{int_{rn}mu(x,w)dw}dxdv,$ and the minimization is performed over the space of probability densities $mu(x,v)$ that satisfy the holonomy constraint It follows from D. Gomes and E. Valdinoci that there exists a minimizing measure $mu_{epsilon, h}$ which converges to the Mather measure $mu$. We show a LDP $lim_{epsilon,hto0} epsilon ln mu_{epsilon,h}(A),$ where $Asubset mathbb{T}^Ntimesmathbb{R}^N$. The deviation function I is given by $I(x,v)= L(x,v)+ ablaphi_0(x)(v)-bar{H}_{0},$ where $phi_0$ is the unique viscosity solution for L.
We adjust Arnouxs coding, in terms of regular continued fractions, of the geodesic flow on the modular surface to give a cross section on which the return map is a double cover of the natural extension for the alpha-continued fractions, for each $alpha$ in (0,1]. The argument is sufficiently robust to apply to the Rosen continued fractions and their recently introduced alpha-variants.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا