No Arabic abstract
Deep learning can be used to classify waveform characteristics (e.g., modulation) with accuracy levels that are hardly attainable with traditional techniques. Recent research has demonstrated that one of the most crucial challenges in wireless deep learning is to counteract the channel action, which may significantly alter the waveform features. The problem is further exacerbated by the fact that deep learning algorithms are hardly re-trainable in real time due to their sheer size. This paper proposes DeepFIR, a framework to counteract the channel action in wireless deep learning algorithms without retraining the underlying deep learning model. The key intuition is that through the application of a carefully-optimized digital finite input response filter (FIR) at the transmitters side, we can apply tiny modifications to the waveform to strengthen its features according to the current channel conditions. We mathematically formulate the Waveform Optimization Problem (WOP) as the problem of finding the optimum FIR to be used on a waveform to improve the classifiers accuracy. We also propose a data-driven methodology to train the FIRs directly with dataset inputs. We extensively evaluate DeepFIR on a experimental testbed of 20 software-defined radios, as well as on two datasets made up by 500 ADS-B devices and by 500 WiFi devices and a 24-class modulation dataset. Experimental results show that our approach (i) increases the accuracy of the radio fingerprinting models by about 35%, 50% and 58%; (ii) decreases an adversarys accuracy by about 54% when trying to imitate other devices fingerprints by using their filters; (iii) achieves 27% improvement over the state of the art on a 100-device dataset; (iv) increases by 2x the accuracy of the modulation dataset.
The unprecedented requirements of the Internet of Things (IoT) have made fine-grained optimization of spectrum resources an urgent necessity. Thus, designing techniques able to extract knowledge from the spectrum in real time and select the optimal spectrum access strategy accordingly has become more important than ever. Moreover, 5G and beyond (5GB) networks will require complex management schemes to deal with problems such as adaptive beam management and rate selection. Although deep learning (DL) has been successful in modeling complex phenomena, commercially-available wireless devices are still very far from actually adopting learning-based techniques to optimize their spectrum usage. In this paper, we first discuss the need for real-time DL at the physical layer, and then summarize the current state of the art and existing limitations. We conclude the paper by discussing an agenda of research challenges and how DL can be applied to address crucial problems in 5GB networks.
This paper advances the state of the art by proposing the first comprehensive analysis and experimental evaluation of adversarial learning attacks to wireless deep learning systems. We postulate a series of adversarial attacks, and formulate a Generalized Wireless Adversarial Machine Learning Problem (GWAP) where we analyze the combined effect of the wireless channel and the adversarial waveform on the efficacy of the attacks. We propose a new neural network architecture called FIRNet, which can be trained to hack a classifier based only on its output. We extensively evaluate the performance on (i) a 1,000-device radio fingerprinting dataset, and (ii) a 24-class modulation dataset. Results obtained with several channel conditions show that our algorithms can decrease the classifier accuracy up to 3x. We also experimentally evaluate FIRNet on a radio testbed, and show that our data-driven blackbox approach can confuse the classifier up to 97% while keeping the waveform distortion to a minimum.
LoRa wireless networks are considered as a key enabling technology for next generation internet of things (IoT) systems. New IoT deployments (e.g., smart city scenarios) can have thousands of devices per square kilometer leading to huge amount of power consumption to provide connectivity. In this paper, we investigate green LoRa wireless networks powered by a hybrid of the grid and renewable energy sources, which can benefit from harvested energy while dealing with the intermittent supply. This paper proposes resource management schemes of the limited number of channels and spreading factors (SFs) with the objective of improving the LoRa gateway energy efficiency. First, the problem of grid power consumption minimization while satisfying the systems quality of service demands is formulated. Specifically, both scenarios the uncorrelated and time-correlated channels are investigated. The optimal resource management problem is solved by decoupling the formulated problem into two sub-problems: channel and SF assignment problem and energy management problem. Since the optimal solution is obtained with high complexity, online resource management heuristic algorithms that minimize the grid energy consumption are proposed. Finally, taking into account the channel and energy correlation, adaptable resource management schemes based on Reinforcement Learning (RL), are developed. Simulations results show that the proposed resource management schemes offer efficient use of renewable energy in LoRa wireless networks.
The last mile connection is dominated by wireless links where heterogeneous nodes share the limited and already crowded electromagnetic spectrum. Current contention based decentralized wireless access system is reactive in nature to mitigate the interference. In this paper, we propose to use neural networks to learn and predict spectrum availability in a collaborative manner such that its availability can be predicted with a high accuracy to maximize wireless access and minimize interference between simultaneous links. Edge nodes have a wide range of sensing and computation capabilities, while often using different operator networks, who might be reluctant to share their models. Hence, we introduce a peer to peer Federated Learning model, where a local model is trained based on the sensing results of each node and shared among its peers to create a global model. The need for a base station or access point to act as centralized parameter server is replaced by empowering the edge nodes as aggregators of the local models and minimizing the communication overhead for model transmission. We generate wireless channel access data, which is used to train the local models. Simulation results for both local and global models show over 95% accuracy in predicting channel opportunities in various network topology.
Due to its high mobility and flexible deployment, unmanned aerial vehicle (UAV) is drawing unprecedented interest in both military and civil applications to enable agile wireless communications and provide ubiquitous connectivity. Mainly operating in an open environment, UAV communications can benefit from dominant line-of-sight links; however, it on the other hand renders the UAVs more vulnerable to malicious eavesdropping or jamming attacks. Recently, physical layer security (PLS), which exploits the inherent randomness of the wireless channels for secure communications, has been introduced to UAV systems as an important complement to the conventional cryptography-based approaches. In this paper, a comprehensive survey on the current achievements of the UAV-aided wireless communications is conducted from the PLS perspective. We first introduce the basic concepts of UAV communications including the typical static/mobile deployment scenarios, the unique characteristics of air-to-ground channels, as well as various roles that a UAV may act when PLS is concerned. Then, we introduce the widely used secrecy performance metrics and start by reviewing the secrecy performance analysis and enhancing techniques for statically deployed UAV systems, and extend the discussion to a more general scenario where the UAVs mobility is further exploited. For both cases, respectively, we summarize the commonly adopted methodologies in the corresponding analysis and design, then describe important works in the literature in detail. Finally, potential research directions and challenges are discussed to provide an outlook for future works in the area of UAV-PLS in 5G and beyond networks.