Do you want to publish a course? Click here

Physical Layer Security for UAV Communications in 5G and Beyond Networks

115   0   0.0 ( 0 )
 Added by Jue Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Due to its high mobility and flexible deployment, unmanned aerial vehicle (UAV) is drawing unprecedented interest in both military and civil applications to enable agile wireless communications and provide ubiquitous connectivity. Mainly operating in an open environment, UAV communications can benefit from dominant line-of-sight links; however, it on the other hand renders the UAVs more vulnerable to malicious eavesdropping or jamming attacks. Recently, physical layer security (PLS), which exploits the inherent randomness of the wireless channels for secure communications, has been introduced to UAV systems as an important complement to the conventional cryptography-based approaches. In this paper, a comprehensive survey on the current achievements of the UAV-aided wireless communications is conducted from the PLS perspective. We first introduce the basic concepts of UAV communications including the typical static/mobile deployment scenarios, the unique characteristics of air-to-ground channels, as well as various roles that a UAV may act when PLS is concerned. Then, we introduce the widely used secrecy performance metrics and start by reviewing the secrecy performance analysis and enhancing techniques for statically deployed UAV systems, and extend the discussion to a more general scenario where the UAVs mobility is further exploited. For both cases, respectively, we summarize the commonly adopted methodologies in the corresponding analysis and design, then describe important works in the literature in detail. Finally, potential research directions and challenges are discussed to provide an outlook for future works in the area of UAV-PLS in 5G and beyond networks.



rate research

Read More

The unprecedented requirements of the Internet of Things (IoT) have made fine-grained optimization of spectrum resources an urgent necessity. Thus, designing techniques able to extract knowledge from the spectrum in real time and select the optimal spectrum access strategy accordingly has become more important than ever. Moreover, 5G and beyond (5GB) networks will require complex management schemes to deal with problems such as adaptive beam management and rate selection. Although deep learning (DL) has been successful in modeling complex phenomena, commercially-available wireless devices are still very far from actually adopting learning-based techniques to optimize their spectrum usage. In this paper, we first discuss the need for real-time DL at the physical layer, and then summarize the current state of the art and existing limitations. We conclude the paper by discussing an agenda of research challenges and how DL can be applied to address crucial problems in 5GB networks.
Unmanned aerial vehicle (UAV) wireless communications have experienced an upsurge of interest in both military and civilian applications, due to its high mobility, low cost, on-demand deployment, and inherent line-of-sight (LoS) air-to-ground channels. However, these benefits also make UAV wireless communication systems vulnerable to malicious eavesdropping attacks. In this article, we aim to examine the physical layer security issues in UAV systems. In particular, passive and active eavesdroppings are two primary attacks in UAV systems. We provide an overview on emerging techniques, such as trajectory design, resource allocation, and cooperative UAVs, to fight against both types of eavesdroppings in UAV wireless communication systems. Moreover, the applications of non-orthogonal multiple access, multiple-input and multiple-output, and millimeter wave in UAV systems are also proposed to improve the system spectral efficiency and to guarantee security simultaneously. Finally, we discuss some potential research directions and challenges in terms of physical layer security in UAV systems.
The integration of unmanned aerial vehicles (UAVs) into the terrestrial cellular networks is envisioned as one key technology for next-generation wireless communications. In this work, we consider the physical layer security of the communications links in the millimeter-wave (mmWave) spectrum which are maintained by UAVs functioning as base stations (BS). In particular, we propose a new precoding strategy which incorporates the channel state information (CSI) of the eavesdropper (Eve) compromising link security. We show that our proposed precoder strategy eliminates any need for artificial noise (AN) transmission in underloaded scenarios (fewer users than number of antennas). In addition, we demonstrate that our nonlinear precoding scheme provides promising secrecy-rate performance even for overloaded scenarios at the expense of transmitting low-power AN.
Machine learning provides automated means to capture complex dynamics of wireless spectrum and support better understanding of spectrum resources and their efficient utilization. As communication systems become smarter with cognitive radio capabilities empowered by machine learning to perform critical tasks such as spectrum awareness and spectrum sharing, they also become susceptible to new vulnerabilities due to the attacks that target the machine learning applications. This paper identifies the emerging attack surface of adversarial machine learning and corresponding attacks launched against wireless communications in the context of 5G systems. The focus is on attacks against (i) spectrum sharing of 5G communications with incumbent users such as in the Citizens Broadband Radio Service (CBRS) band and (ii) physical layer authentication of 5G User Equipment (UE) to support network slicing. For the first attack, the adversary transmits during data transmission or spectrum sensing periods to manipulate the signal-level inputs to the deep learning classifier that is deployed at the Environmental Sensing Capability (ESC) to support the 5G system. For the second attack, the adversary spoofs wireless signals with the generative adversarial network (GAN) to infiltrate the physical layer authentication mechanism based on a deep learning classifier that is deployed at the 5G base station. Results indicate major vulnerabilities of 5G systems to adversarial machine learning. To sustain the 5G system operations in the presence of adversaries, a defense mechanism is presented to increase the uncertainty of the adversary in training the surrogate model used for launching its subsequent attacks.
Supporting reliable and seamless wireless connectivity for unmanned aerial vehicles (UAVs) has recently become a critical requirement to enable various different use cases of UAVs. Due to their widespread deployment footprint, cellular networks can support beyond visual line of sight (BVLOS) communications for UAVs. In this paper, we consider cellular connected UAVs (C-UAVs) that are served by massive multiple-input-multiple-output (MIMO) links to extend coverage range, while also improving physical layer security and authentication. We consider Rician channel and propose a novel linear precoder design for transmitting data and artificial noise (AN). We derive the closed-form expression of the ergodic secrecy rate of C-UAVs for both conventional and proposed precoder designs. In addition, we obtain the optimal power splitting factor that divides the power between data and AN by asymptotic analysis. Then, we apply the proposed precoder design in the fingerprint embedding authentication framework, where the goal is to minimize the probability of detection of the authentication tag at an eavesdropper. In simulation results, we show the superiority of the proposed precoder in both secrecy rate and the authentication probability considering moderate and large number of antenna massive MIMO scenarios.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا