Do you want to publish a course? Click here

Opportunistic Intermittent Control with Safety Guarantees for Autonomous Systems

130   0   0.0 ( 0 )
 Added by Chao Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Control schemes for autonomous systems are often designed in a way that anticipates the worst case in any situation. At runtime, however, there could exist opportunities to leverage the characteristics of specific environment and operation context for more efficient control. In this work, we develop an online intermittent-control framework that combines formal verification with model-based optimization and deep reinforcement learning to opportunistically skip certain control computation and actuation to save actuation energy and computational resources without compromising system safety. Experiments on an adaptive cruise control system demonstrate that our approach can achieve significant energy and computation savings.



rate research

Read More

162 - Yixuan Wang , Chao Huang , Qi Zhu 2020
Neural networks have been increasingly applied for control in learning-enabled cyber-physical systems (LE-CPSs) and demonstrated great promises in improving system performance and efficiency, as well as reducing the need for complex physical models. However, the lack of safety guarantees for such neural network based controllers has significantly impeded their adoption in safety-critical CPSs. In this work, we propose a controller adaptation approach that automatically switches among multiple controllers, including neural network controllers, to guarantee system safety and improve energy efficiency. Our approach includes two key components based on formal methods and machine learning. First, we approximate each controller with a Bernstein-polynomial based hybrid system model under bounded disturbance, and compute a safe invariant set for each controller based on its corresponding hybrid system. Intuitively, the invariant set of a controller defines the state space where the system can always remain safe under its control. The union of the controllers invariants sets then define a safe adaptation space that is larger than (or equal to) that of each controller. Second, we develop a deep reinforcement learning method to learn a controller switching strategy for reducing the control/actuation energy cost, while with the help of a safety guard rule, ensuring that the system stays within the safe space. Experiments on a linear adaptive cruise control system and a non-linear Van der Pols oscillator demonstrate the effectiveness of our approach on energy saving and safety enhancement.
79 - He Yin , Peter Seiler , Ming Jin 2020
A method is presented to learn neural network (NN) controllers with stability and safety guarantees through imitation learning (IL). Convex stability and safety conditions are derived for linear time-invariant plant dynamics with NN controllers by merging Lyapunov theory with local quadratic constraints to bound the nonlinear activation functions in the NN. These conditions are incorporated in the IL process, which minimizes the IL loss, and maximizes the volume of the region of attraction associated with the NN controller simultaneously. An alternating direction method of multipliers based algorithm is proposed to solve the IL problem. The method is illustrated on an inverted pendulum system, aircraft longitudinal dynamics, and vehicle lateral dynamics.
178 - Zexiang Liu , Necmiye Ozay 2019
This paper considers the problem of safety controller synthesis for systems equipped with sensor modalities that can provide preview information. We consider switched systems where switching mode is an external signal for which preview information is available. In particular, it is assumed that the sensors can notify the controller about an upcoming mode switch before the switch occurs. We propose preview automaton, a mathematical construct that captures both the preview information and the possible constraints on switching signals. Then, we study safety control synthesis problem with preview information. An algorithm that computes the maximal invariant set in a given mode-dependent safe set is developed. These ideas are demonstrated on two case studies from autonomous driving domain.
Control barrier functions have shown great success in addressing control problems with safety guarantees. These methods usually find the next safe control input by solving an online quadratic programming problem. However, model uncertainty is a big challenge in synthesizing controllers. This may lead to the generation of unsafe control actions, resulting in severe consequences. In this paper, we develop a learning framework to deal with system uncertainty. Our method mainly focuses on learning the dynamics of the control barrier function, especially for high relative degree with respect to a system. We show that for each order, the time derivative of the control barrier function can be separated into the time derivative of the nominal control barrier function and a remainder. This implies that we can use a neural network to learn the remainder so that we can approximate the dynamics of the real control barrier function. We show by simulation that our method can generate safe trajectories under parametric uncertainty using a differential drive robot model.
We propose Kernel Predictive Control (KPC), a learning-based predictive control strategy that enjoys deterministic guarantees of safety. Noise-corrupted samples of the unknown system dynamics are used to learn several models through the formalism of non-parametric kernel regression. By treating each prediction step individually, we dispense with the need of propagating sets through highly non-linear maps, a procedure that often involves multiple conservative approximation steps. Finite-sample error bounds are then used to enforce state-feasibility by employing an efficient robust formulation. We then present a relaxation strategy that exploits on-line data to weaken the optimization problem constraints while preserving safety. Two numerical examples are provided to illustrate the applicability of the proposed control method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا