Do you want to publish a course? Click here

Multi-Wave band Synchrotron Polarization of Gamma-Ray Burst Afterglows

65   0   0.0 ( 0 )
 Added by Jiro Shimoda
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multi-wave band synchrotron linear polarization of gamma-ray burst (GRB) afterglows is studied under the assumption of an anisotropic turbulent magnetic field with a coherence length of the plasma skin-depth scale in the downstream of forward shocks. We find that for typical GRBs, in comparison to the optical polarization, the degree of radio polarization shows a similar temporal evolution but a significantly smaller peak value. This results from differences in observed intensity image shapes between the radio and optical bands. We also show that the degree of the polarization spectrum undergoes a gradual variation from the low- to the high-polarization regime above the intensity of the spectral peak frequency, and that the difference in polarization angles in the two regimes is zero or 90 degrees. Thus, simultaneous multi-wave band polarimetric observations of GRB afterglows would be a new determinative test of the plasma-scale magnetic field model. We also discuss theoretical implications from the recent detection of radio linear polarization in GRB 171205A with ALMA and other models of magnetic field configuration.



rate research

Read More

128 - D. A. Badjin 2013
We study thermal emission from circumstellar structures heated by gamma-ray burst (GRB) radiation and ejecta and calculate its contribution to GRB optical and X-ray afterglows using the modified radiation hydro-code small STELLA. It is shown that thermal emission originating in heated dense shells around the GRB progenitor star can reproduce X-ray plateaus (like observed in GRB 050904, 070110) as well as deviations from a power law fading observed in optical afterglows of some GRBs (e.g. 020124, 030328, 030429X, 050904). Thermal radiation pressure in the heated circumburst shell dominates the gas pressure, producing rapid expansion of matter similar to supenova-like explosions close to opacity or radiation flux density jumps in the circumburst medium. This phenomenon can be responsible for so-called supernova bumps in optical afterglows of several GRBs. Such a `quasi-supernova suggests interpretation of the GRB-SN connection which does not directly involve the explosion of the GRB progenitor star.
The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; $gtrsim$~GeV) remains uncertain. The recent detection of sub-TeV emission from GRB~190114C by MAGIC raises further debate on what powers the very high-energy (VHE; $gtrsim 300$GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multi-wavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB~190114C, we find that its afterglow emission in the fermi-LAT band is synchrotron-dominated.The late-time fermi-LAT measurement (i.e., $tsim 10^4$~s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. $lesssim 3times 10^{-9},{rm erg,cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.
164 - K.Zhang , Z.B.Zhang , Y.F.Huang 2020
We systematically analyze three GRB samples named as radio-loud, radio-quiet and radio-none afterglows, respectively. It is shown that dichotomy of the radio-loud afterglows is not necessary. Interestingly, we find that the intrinsic durations ($T_{int}$), isotropic energies of prompt gamma-rays ($E_{gamma, iso}$) and redshifts ($z$) of their host galaxies are log-normally distributed for both the radio-loud and radio-quiet samples except those GRBs without any radio detections. Based on the distinct distributions of $T_{int}$, $E_{gamma, iso}$, the circum-burst medium density ($n$) and the isotropic equivalent energy of radio afterglows ($L_{ u,p}$), we confirm that the GRB radio afterglows are really better to be divided into the dim and the bright types. However, it is noticeable that the distributions of flux densities ($F_{host}$) from host galaxies of both classes of radio afterglows are intrinsically quite similar. Meanwhile, we point out that the radio-none sample is also obviously different from the above two samples with radio afterglows observed, according to the cumulative frequency distributions of the $T_{int}$ and the $E_{gamma, iso}$, together with correlations between $T_{int}$ and $z$. In addition, a positive correlation between $E_{gamma, iso}$ and $L_{ u,p}$ is found in the radio-loud samples especially for the supernova-associated GRBs. Besides, we also find this positive correlation in the radio-quiet sample. A negative correlation between $T_{int}$ and $z$ is confirmed to hold for the radio-quiet sample too. The dividing line between short and long GRBs in the rest frame is at $T_{int}simeq$1 s. Consequently, we propose that the radio-loud, the radio-quiet and the radio-none GRBs could be originated from different progenitors.
162 - Gu-Jing Lv 2011
In order to study the effect of dust extinction on the afterglow of gamma-ray bursts (GRBs), we carry out numerical calculations with high precision based on rigorous Mie theory and latest optical properties of interstellar dust grains, and analyze the different extinction curves produced by dust grains with different physical parameters. Our results indicate that the absolute extinction quantity is substantially determined by the medium density and metallicity. However, the shape of the extinction curve is mainly determined by the size distribution of the dust grains. If the dust grains aggregate to form larger ones, they will cause a flatter or grayer extinction curve with lower extinction quantity. On the contrary, if the dust grains are disassociated to smaller ones due to some uncertain processes, they will cause a steeper extinction curve with larger amount of extinction. These results might provide an important insight into understanding the origin of the optically dark GRBs.
We present a study of the intermediate regime between ultra-relativistic and nonrelativistic flow for gamma-ray burst afterglows. The hydrodynamics of spherically symmetric blast waves is numerically calculated using the AMRVAC adaptive mesh refinement code. Spectra and light curves are calculated using a separate radiation code that, for the first time, links a parametrisation of the microphysics of shock acceleration, synchrotron self-absorption and electron cooling to a high-performance hydrodynamics simulation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا