Do you want to publish a course? Click here

Checking Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling

67   0   0.0 ( 0 )
 Added by Philipp J. Meyer
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a sound and complete method for the verification of qualitative liveness properties of replicated systems under stochastic scheduling. These are systems consisting of a finite-state program, executed by an unknown number of indistinguishable agents, where the next agent to make a move is determined by the result of a random experiment. We show that if a property of such a system holds, then there is always a witness in the shape of a Presburger stage graph: a finite graph whose nodes are Presburger-definable sets of configurations. Due to the high complexity of the verification problem (non-elementary), we introduce an incomplete procedure for the construction of Presburger stage graphs, and implement it on top of an SMT solver. The procedure makes extensive use of the theory of well-quasi-orders, and of the structural theory of Petri nets and vector addition systems. We apply our results to a set of benchmarks, in particular to a large collection of population protocols, a model of distributed computation extensively studied by the distributed computing community.



rate research

Read More

53 - Rob van Glabbeek 2019
Often fairness assumptions need to be made in order to establish liveness properties of distributed systems, but in many situations they lead to false conclusions. This document presents a research agenda aiming at laying the foundations of a theory of concurrency that is equipped to ensure liveness properties of distributed systems without making fairness assumptions. This theory will encompass process algebra, temporal logic and semantic models. The agenda also includes the development of a methodology and tools that allow successful application of this theory to the specification, analysis and verification of realistic distributed systems. Contemporary process algebras and temporal logics fail to make distinctions between systems of which one has a crucial liveness property and the other does not, at least when assuming justness, a strong progress property, but not assuming fairness. Setting up an alternative framework involves giving up on identifying strongly bisimilar systems, inventing new induction principles, developing new axiomatic bases for process algebras and new congruence formats for operational semantics, and creating matching treatments of time and probability. Even simple systems like fair schedulers or mutual exclusion protocols cannot be accurately specified in standard process algebras (or Petri nets) in the absence of fairness assumptions. Hence the work involves the study of adequate language or model extensions, and their expressive power.
We present the first session typing system guaranteeing request-response liveness properties for possibly non-terminating communicating processes. The types augment the branch and select types of the standard binary session types with a set of required responses, indicating that whenever a particular label is selected, a set of other labels, its responses, must eventually also be selected. We prove that these extended types are strictly more expressive than standard session types. We provide a type system for a process calculus similar to a subset of collaborative BPMN processes with internal (data-based) and external (event-based) branching, message passing, bounded and unbounded looping. We prove that this type system is sound, i.e., it guarantees request-response liveness for dead-lock free processes. We exemplify the use of the calculus and type system on a concrete example of an infinite state system.
164 - Rob van Glabbeek 2017
Often fairness assumptions need to be made in order to establish liveness properties of distributed systems, but in many situations these lead to false conclusions. This document presents a research agenda aiming at laying the foundations of a theory of concurrency that is equipped to ensure liveness properties of distributed systems without making fairness assumptions. This theory will encompass process algebra, temporal logic and semantic models, as well as treatments of real-time. The agenda also includes developing a methodology that allows successful application of this theory to the specification, analysis and verification of realistic distributed systems, including routing protocols for wireless networks. Contemporary process algebras and temporal logics fail to make distinctions between systems of which one has a crucial liveness property and the other does not, at least when assuming justness, a strong progress property, but not assuming fairness. Setting up an alternative framework involves giving up on identifying strongly bisimilar systems, inventing new induction principles, developing new axiomatic bases for process algebras and new congruence formats for operational semantics, and creating new treatments of time and probability. Even simple systems like fair schedulers or mutual exclusion protocols cannot be accurately specified in standard process algebras (or Petri nets) in the absence of fairness assumptions. Hence the work involves the study of adequate language or model extensions, and their expressive power.
Many properties of communication protocols combine safety and liveness aspects. Characterizing such combined properties by means of a single inference system is difficult because of the fundamentally different techniques (coinduction and induction, respectively) usually involved in defining and proving them. In this paper we show that Generalized Inference Systems allow for simple and insightful characterizations of (at least some of) these combined inductive/coinductive properties of binary session types. In particular, we illustrate the role of corules in characterizing fair termination (the property of protocols that can always eventually terminate), fair compliance (the property of interactions that can always be extended to reach client satisfaction) and fair subtyping, a liveness-preserving refinement relation for session types.
In spatially located, large scale systems, time and space dynamics interact and drives the behaviour. Examples of such systems can be found in many smart city applications and Cyber-Physical Systems. In this paper we present the Signal Spatio-Temporal Logic (SSTL), a modal logic that can be used to specify spatio-temporal properties of linear time and discrete space models. The logic is equipped with a Boolean and a quantitative semantics for which efficient monitoring algorithms have been developed. As such, it is suitable for real-time verification of both white box and black box complex systems. These algorithms can also be combined with stochastic model checking routines. SSTL combines the until temporal modality with two spatial modalities, one expressing that something is true somewhere nearby and the other capturing the notion of being surrounded by a region that satisfies a given spatio-temporal property. The monitoring algorithms are implemented in an open source Java tool. We illustrate the use of SSTL analysing the formation of patterns in a Turing Reaction-Diffusion system and spatio-temporal aspects of a large bike-sharing system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا