Do you want to publish a course? Click here

Search for $eta$ bound nuclei in the $^{12}{rm C}(gamma,p)$ reaction with simultaneous detection of decay products

88   0   0.0 ( 0 )
 Added by Natsuki Tomida
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We measured missing mass spectrum of the $^{12}{rm C}(gamma,p)$ reaction for the first time in coincidence with potential decay products from $eta$ bound nuclei. We tagged an ($eta+p$) pair associated with the $etaNtoeta N$ process in a nucleus. After applying kinematical selections to reduce backgrounds, no signal events were observed in the bound-state region. An upper limit of the signal cross section in the opening angle $costheta^{eta p}_{lab}<-0.9$ was obtained to be 2.2 nb/sr at the 90$%$ confidence level. It is compared with theoretical cross sections, whose normalization ambiguity is suppressed by measuring a quasifree $eta$ production rate. Our results indicate a small branching fraction of the $etaNtoeta N$ process and/or a shallow $eta$-nucleus potential.



rate research

Read More

We comment on a recent paper by the LEPS2/BGOegg Collaboration [Phys. Rev. Lett. 124, 202501 (2020), arXiv:2005.03449].
Excitation-energy spectra of $^{11}$C nuclei near the $eta^prime$-meson production threshold have been measured by missing-mass spectroscopy using the $^{12}$C($p$,$d$) reaction. A carbon target has been irradiated with a 2.5 GeV proton beam supplied by the synchrotron SIS-18 at GSI to produce $eta^prime$ meson bound states in $^{11}$C nuclei. Deuterons emitted at $0^circ$ in the reaction have been momentum-analyzed by the fragment separator (FRS) used as a high-resolution spectrometer. No distinct structure due to the formation of $eta^prime$-mesic states is observed although a high statistical sensitivity is achieved in the experimental spectra. Upper limits on the formation cross sections of $eta^prime$-mesic states are determined, and thereby a constraint imposed on the $eta^prime$-nucleus interaction is discussed.
Excitation spectra of $^{11}$C were measured in the $^{12}$C$(p,d)$ reaction near the $eta$ emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinged on a carbon target. The momenta of deuterons emitted at 0 degrees were precisely measured with the fragment separator FRS operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound $eta$ mesic states in carbon nuclei, no distinct structures were observed associated with the formation of bound states. The spectra were analyzed to set stringent constraints on the formation cross section and on the hitherto barely-known $eta$-nucleus interaction.
We are going to perform an inclusive spectroscopy experiment of eta mesic nuclei with the 12C(p,d) reaction to study in-medium properties of the eta meson. In nuclear medium, the eta meson mass may be reduced due to partial restoration of chiral symmetry. In case of sufficiently large mass reduction and small absorption width of eta at normal nuclear density, peak structures of eta mesic states in 11C will be observed near the eta emission threshold even in an inclusive spectrum. The experiment will be carried out at GSI with proton beam supplied by SIS using FRS as a spectrometer. The detail of the experiment is described.
Passive detection of special nuclear material (SNM) is challenging due to its inherently low rate of spontaneous emission of penetrating radiation, the relative ease of shielding, and the fluctuating and frequently overwhelming background. Active interrogation (AI), the use of external radiation to increase the emission rate of characteristic radiation from SNM, has long been considered to be a promising method to overcome those challenges. Current AI systems that incorporate radiography tend to use bremsstrahlung beams, which can deliver high radiation doses. Low-energy ion-driven nuclear reactions that produce multiple monoenergetic photons may be used as an alternative. The $^{12}$C(p,p)$^{12}$C is one such reaction that could produce large gamma-ray yields of highly penetrating 4.4- and 15.1-MeV gamma rays. This reaction does not directly produce neutrons below the $sim$19.7-MeV threshold, and the 15.1-MeV gamma-ray line is well matched to the photofission cross-section of $^{235}$U and $^{238}$U. We report the measurements of thick-target gamma-ray yields at 4.4 and 15.1 MeV from the $^{12}$C(p,p)$^{12}$C at proton energies of 19.5, 25, and 30 MeV. Measurements were made with two 3 EJ309 cylindrical liquid scintillation detectors and thermoluminescent dosimeters placed at 0 and 90 degrees. We estimate the highest yields of the 4.4- and 15.1-MeV gamma rays of 1.65$times10^{10}$ sr$^{-1}mu$ C$^{-1}$ and 4.47$times10^8$ sr$^{-1}mu$ C$^{-1}$ at a proton energy of 30 MeV, respectively. The yield of 4.4 and 15.1 MeV gamma rays in all experimental configurations is greater than a comparable deuteron-driven reaction that produces the same gamma-ray energies- $^{11}$B(d,n$gamma$)$^{12}$C. However, a two orders of magnitude increase of the neutron radiation dose is observed when the proton energy increases from 19.5 to 30 MeV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا