Do you want to publish a course? Click here

Characterization of the $^{12}$C(p,p)$^{12}$C Reaction (E$_p$=19.5$-$30 MeV) for Active Interrogation

75   0   0.0 ( 0 )
 Added by Jason Nattress
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Passive detection of special nuclear material (SNM) is challenging due to its inherently low rate of spontaneous emission of penetrating radiation, the relative ease of shielding, and the fluctuating and frequently overwhelming background. Active interrogation (AI), the use of external radiation to increase the emission rate of characteristic radiation from SNM, has long been considered to be a promising method to overcome those challenges. Current AI systems that incorporate radiography tend to use bremsstrahlung beams, which can deliver high radiation doses. Low-energy ion-driven nuclear reactions that produce multiple monoenergetic photons may be used as an alternative. The $^{12}$C(p,p)$^{12}$C is one such reaction that could produce large gamma-ray yields of highly penetrating 4.4- and 15.1-MeV gamma rays. This reaction does not directly produce neutrons below the $sim$19.7-MeV threshold, and the 15.1-MeV gamma-ray line is well matched to the photofission cross-section of $^{235}$U and $^{238}$U. We report the measurements of thick-target gamma-ray yields at 4.4 and 15.1 MeV from the $^{12}$C(p,p)$^{12}$C at proton energies of 19.5, 25, and 30 MeV. Measurements were made with two 3 EJ309 cylindrical liquid scintillation detectors and thermoluminescent dosimeters placed at 0 and 90 degrees. We estimate the highest yields of the 4.4- and 15.1-MeV gamma rays of 1.65$times10^{10}$ sr$^{-1}mu$ C$^{-1}$ and 4.47$times10^8$ sr$^{-1}mu$ C$^{-1}$ at a proton energy of 30 MeV, respectively. The yield of 4.4 and 15.1 MeV gamma rays in all experimental configurations is greater than a comparable deuteron-driven reaction that produces the same gamma-ray energies- $^{11}$B(d,n$gamma$)$^{12}$C. However, a two orders of magnitude increase of the neutron radiation dose is observed when the proton energy increases from 19.5 to 30 MeV.



rate research

Read More

The integral measurement of the $^{12}$C(n,p)$^{12}$B reaction was performed at the neutron time of flight facility n_TOF at CERN. The total number of $^{12}$B nuclei produced per neutron pulse of the n_TOF beam was determined using the activation technique in combination with a time of flight technique. The cross section is integrated over the n_TOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1 GeV on basis of the $^{235}$U(n,f) reaction, the neutron energy spectrum above 200 MeV has been reevaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the $^{12}$C(n,p)$^{12}$B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the $^{12}$B production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters.
107 - W. J. Li , Y. G. Ma , G. Q. Zhang 2019
The neutron yield in $^{12}$C(d,n)$^{13}$N and the proton yield in $^{12}C(d,p)^{13}$C have been measured by deuteron beam from 0.6 MeV to 3 MeV which is delivered from a 4-MeV electro static accelerator bombarding on the thick carbon target. The neutrons are detected at $0degree$, $24degree$, $48degree$ and the protons at $135degree$ in the lab frame. The ratios of the neutron yield to the proton one have been calculated and can be used as an effective probe to pin down the resonances. The resonances are found at 1.4 MeV, 1.7 MeV, 2.5 MeV in $^{12}C(d,p)^{13}$C and at 1.6 MeV, 2.7 MeV in $^{12}$C(d,n)$^{13}$N. This method provides a way to reduce the systematic uncertainty and helps to confirm more resonances in compound nuclei.
67 - M. S. Reen , I. Ou , T. Sudo 2019
We measured both the differential cross section ($sigma_{p,p^prime}$ $=d^2sigma/dOmega dE_{x}$) and the $gamma$-ray emission probability ($R_gamma(E_x)$ $=sigma_{p,p^primegamma}$/$sigma_{p,p^prime}$) from the giant resonances excited by $rm^{12}C$(textit{p,p}$^prime$) reaction at 392 MeV and 0$^circ$, using a magnetic spectrometer and an array of NaI(Tl) counters. The absolute value of $R_gamma(E_x)$ was calibrated by using the well-known $gamma$-ray emission probability from $rm^{12}C^* ( 15.11$ MeV, $ 1^+$, $T=1$) and $rm^{16}O^* ( 6.9$ MeV, $2^+$, $T=0$) states within 5% uncertainty. We found that $R_gamma(E_x)$ starts from zero at $E_x=16$ MeV, increases to a maximum of 53.3$pm$0.4$pm$3.9% at $E_x=27$ MeV and then decreases. We also compared the measured values of $R_gamma(E_x)$ with statistical model calculation based on the Hauser-Feshbach formalism in the energy region $E_x=$ 16-32 MeV and discussed the features of $gamma$-ray emission probability quantitatively.
Multiple alpha coincidence and correlations are studied in the reaction $^{12}$C+$^{12}$C at 95 MeV for fusion-evaporation events completely detected in charge. Two specific channels with Carbon and Oxygen residues in coincidence with $alpha$-particles are addressed, which are associated with anomalously high branching ratios with respect the predictions by Hauser-Feshbach calculations. Triple alpha emission appears kinematically compatible with a sequential emission from a highly excited Mg. The phase space distribution of $alpha$-$alpha$ coincidences suggests a correlated emission from a Mg compound, leaving an Oxygen residue excited above the threshold for neutron decay. These observations indicate a preferential $alpha$ emission of $^{24}$Mg at excitation energies well above the threshold for $6-alpha$ decay.
120 - W. P. Tan , A. Boeltzig , C. Dulal 2020
Carbon and oxygen burning reactions, in particular, $^{12}$C+$^{12}$C fusion, are important for the understanding and interpretation of the late phases of stellar evolution as well as the ignition and nucleosynthesis in cataclysmic binary systems such as type Ia supernovae and x-ray superbursts. A new measurement of this reaction has been performed at the University of Notre Dame using particle-$gamma$ coincidence techniques with SAND (a silicon detector array) at the high-intensity 5U Pelletron accelerator. New results for $^{12}$C+$^{12}$C fusion at low energies relevant to nuclear astrophysics are reported. They show strong disagreement with a recent measurement using the indirect Trojan Horse method. The impact on the carbon burning process under astrophysical scenarios will be discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا