Do you want to publish a course? Click here

Decentralized Adaptive Control for Collaborative Manipulation of Rigid Bodies

90   0   0.0 ( 0 )
 Added by Preston Culbertson
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this work, we consider a group of robots working together to manipulate a rigid object to track a desired trajectory in $SE(3)$. The robots do not know the mass or friction properties of the object, or where they are attached to the object. They can, however, access a common state measurement, either from one robot broadcasting its measurements to the team, or by all robots communicating and averaging their state measurements to estimate the state of their centroid. To solve this problem, we propose a decentralized adaptive control scheme wherein each agent maintains and adapts its own estimate of the object parameters in order to track a reference trajectory. We present an analysis of the controllers behavior, and show that all closed-loop signals remain bounded, and that the system trajectory will almost always (except for initial conditions on a set of measure zero) converge to the desired trajectory. We study the proposed controllers performance using numerical simulations of a manipulation task in 3D, as well as hardware experiments which demonstrate our algorithm on a planar manipulation task. These studies, taken together, demonstrate the effectiveness of the proposed controller even in the presence of numerous unmodeled effects, such as discretization errors and complex frictional interactions.



rate research

Read More

In this work, we focus on improving the robots dexterous capability by exploiting visual sensing and adaptive force control. TeachNet, a vision-based teleoperation learning framework, is exploited to map human hand postures to a multi-fingered robot hand. We augment TeachNet, which is originally based on an imprecise kinematic mapping and position-only servoing, with a biomimetic learning-based compliance control algorithm for dexterous manipulation tasks. This compliance controller takes the mapped robotic joint angles from TeachNet as the desired goal, computes the desired joint torques. It is derived from a computational model of the biomimetic control strategy in human motor learning, which allows adapting the control variables (impedance and feedforward force) online during the execution of the reference joint angle trajectories. The simultaneous adaptation of the impedance and feedforward profiles enables the robot to interact with the environment in a compliant manner. Our approach has been verified in multiple tasks in physics simulation, i.e., grasping, opening-a-door, turning-a-cap, and touching-a-mouse, and has shown more reliable performances than the existing position control and the fixed-gain-based force control approaches.
Imitation Learning (IL) is a powerful paradigm to teach robots to perform manipulation tasks by allowing them to learn from human demonstrations collected via teleoperation, but has mostly been limited to single-arm manipulation. However, many real-world tasks require multiple arms, such as lifting a heavy object or assembling a desk. Unfortunately, applying IL to multi-arm manipulation tasks has been challenging -- asking a human to control more than one robotic arm can impose significant cognitive burden and is often only possible for a maximum of two robot arms. To address these challenges, we present Multi-Arm RoboTurk (MART), a multi-user data collection platform that allows multiple remote users to simultaneously teleoperate a set of robotic arms and collect demonstrations for multi-arm tasks. Using MART, we collected demonstrations for five novel two and three-arm tasks from several geographically separated users. From our data we arrived at a critical insight: most multi-arm tasks do not require global coordination throughout its full duration, but only during specific moments. We show that learning from such data consequently presents challenges for centralized agents that directly attempt to model all robot actions simultaneously, and perform a comprehensive study of different policy architectures with varying levels of centralization on our tasks. Finally, we propose and evaluate a base-residual policy framework that allows trained policies to better adapt to the mixed coordination setting common in multi-arm manipulation, and show that a centralized policy augmented with a decentralized residual model outperforms all other models on our set of benchmark tasks. Additional results and videos at https://roboturk.stanford.edu/multiarm .
The robotic manipulation of composite rigid-deformable objects (i.e. those with mixed non-homogeneous stiffness properties) is a challenging problem with clear practical applications that, despite the recent progress in the field, it has not been sufficiently studied in the literature. To deal with this issue, in this paper we propose a new visual servoing method that has the capability to manipulate this broad class of objects (which varies from soft to rigid) with the same adaptive strategy. To quantify the objects infinite-dimensional configuration, our new approach computes a compact feedback vector of 2D contour moments features. A sliding mode control scheme is then designed to simultaneously ensure the finite-time convergence of both the feedback shape error and the model estimation error. The stability of the proposed framework (including the boundedness of all the signals) is rigorously proved with Lyapunov theory. Detailed simulations and experiments are presented to validate the effectiveness of the proposed approach. To the best of the authors knowledge, this is the first time that contour moments along with finite-time control have been used to solve this difficult manipulation problem.
We present a framework for visual action planning of complex manipulation tasks with high-dimensional state spaces such as manipulation of deformable objects. Planning is performed in a low-dimensional latent state space that embeds images. We define and implement a Latent Space Roadmap (LSR) which is a graph-based structure that globally captures the latent system dynamics. Our framework consists of two main components: a Visual Foresight Module (VFM) that generates a visual plan as a sequence of images, and an Action Proposal Network (APN) that predicts the actions between them. We show the effectiveness of the method on a simulated box stacking task as well as a T-shirt folding task performed with a real robot.
Force control is essential for medical robots when touching and contacting the patients body. To increase the stability and efficiency in force control, an Adaption Module could be used to adjust the parameters for different contact situations. We propose an adaptive controller with an Adaption Module which can produce control parameters based on force feedback and real-time stiffness detection. We develop methods for learning the optimal policies by value iteration and using the data generated from those policies to train the Adaptive Module. We test this controller on different zones of a persons arm. All the parameters used in practice are learned from data. The experiments show that the proposed adaptive controller can exert various target forces on different zones of the arm with fast convergence and good stability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا