Do you want to publish a course? Click here

Was GW170817 a canonical neutron star merger? Bayesian analysis with a third family of compact stars

95   0   0.0 ( 0 )
 Added by Alexander Ayriyan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the possibility that GW170817 has not been the merger of two conventional neutron stars (NS) but involved at least one if not two hybrid stars with a quark matter core which might even belong to a third family of compact stars. To this end, we develop a Bayesian analysis method for selecting the most probable equation of state (EoS) under a set of constraints from compact star physics, which now also include the tidal deformability from GW170817 and the first result for the mass and radius determination for PSR J0030+0451 by NICER. We apply this method for the first time to a two-parameter family of hybrid EoS based on the DD2 model with nucleonic excluded volume for hadronic matter and the color superconducting generalized nlNJL model for quark matter. The model has a variable onset of deconfinement and can mimic the effects of pasta phases with the possibility of a third family of hybrid stars in the mass-radius ($M-R$) diagram. The main findings of this study are that: 1) the presence of multiple configurations for a given mass (twins) corresponds to a set of disconnected lines in the diagram of tidal deformabilities for binary mergers, so that merger events from the same mass range may result in a probability landscape with different peak positions; 2) the Bayesian analysis with the above observational constraints favors an early onset of the deconfinement transition, at masses of $M_{rm onset}le 0.8~M_odot$ with a $M-R$ relationship that in the range of observed neutron star masses is almost indistinguishable from that of a soft hadronic APR EoS; 3) a few yet fictitious measurements of the NICER experiment with a $1sigma$ range that is half of the present value and different mass and radius would change the posterior likelihood so that hybrid EoS with a phase transition onset in the range $M_{rm onset} = 1.1 - 1.6~M_odot $ would be favored.



rate research

Read More

A kilonova signal is generally expected after a Black Hole - Neutron Star merger. The strength of the signal is related to the equation of state of neutron star matter and it increases with the stiffness of the latter. The recent results obtained by NICER suggest a rather stiff equation of state and the expected kilonova signal is therefore strong, at least if the mass of the Black Hole does not exceed $sim 10 M_odot$. We compare the predictions obtained by considering equations of state of neutron star matter satisfying the most recent observations and assuming that only one family of compact stars exists with the results predicted in the two-families scenario. In the latter a soft hadronic equation of state produces very compact stellar objects while a rather stiff quark matter equation of state produces massive strange quark stars, satisfying NICER results. The expected kilonova signal in the two-families scenario is very weak: the Strange Quark Star - Black Hole merger does not produce a kilonova signal because, according to simulations, the amount of mass ejected is negligible and the Hadronic Star - Black Hole merger produces a much weaker signal than in the one-family scenario because the hadronic equation of state is very soft. This prediction will be easily tested with the new generation of detectors.
The binary neutron star merger event GW170817 was detected through both electromagnetic radiation and gravitational waves. Its afterglow emission may have been produced by either a narrow relativistic jet or an isotropic outflow. High spatial resolution measurements of the source size and displacement can discriminate between these scenarios. We present Very Long Baseline Interferometry observations, performed 207.4 days after the merger, using a global network of 32 radio telescopes. The apparent source size is constrained to be smaller than 2.5 milliarcseconds at the 90% confidence level. This excludes the isotropic outflow scenario, which would have produced a larger apparent size, indicating that GW170817 produced a structured relativistic jet. Our rate calculations show that at least 10% of neutron star mergers produce such a jet.
The binary neutron star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual rise in the emission with time as t^0.8, a peak at about 150 days post-merger, followed by a relatively rapid decline. To date, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon and a successful-jet cocoon (a.k.a. structured jet). However, the observational data have remained inconclusive as to whether GW170817 launched a successful relativistic jet. Here we show, through Very Long Baseline Interferometry, that the compact radio source associated with GW170817 exhibits superluminal motion between two epochs at 75 and 230 days post-merger. This measurement breaks the degeneracy between the models and indicates that, while the early-time radio emission was powered by a wider-angle outflow (cocoon), the late-time emission was most likely dominated by an energetic and narrowly-collimated jet, with an opening angle of <5 degrees, and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the growing evidence linking binary neutron star mergers and short gamma-ray bursts.
The observations of compact star inspirals from LIGO/Virgo provide a valuable tool to study the highly uncertain equation of state (EOS) of dense matter at the densities in which the compact stars reside. It is not clear whether the merging stars are neutron stars or quark stars containing self-bound quark matter. In this work, we explore the allowed bag-model-like EOSs by assuming the merging stars are strange quark stars (SQSs) from a Bayesian analysis employing the tidal deformability observational data of the GW170817 and GW190425 binary mergers. We consider two extreme states of strange quark matter, either in nonsuperfluid or color-flavor locked (CFL) and find the results in these two cases essentially reconcile. In particular, our results indicate that the sound speed in the SQS matter is approximately a constant close to the conformal limit of $c/sqrt{3}$. The universal relations between the mass, the tidal deformability and the compactness are provided for the SQSs. The most probable values of the maximum mass are found to be $M_{rm TOV}=2.10_{-0.12}^{+0.12}~(2.15_{-0.14}^{+0.16}),M_{odot}$ for normal (CFL) SQSs at a $90%$ confidence level. The corresponding radius and tidal deformability for a $1.4,M_{odot}$ star are $R_{rm 1.4}= 11.50_{-0.55}^{+0.52}~({11.42}_{-0.44}^{+0.52})~rm km$ and $Lambda_{1.4}= {650}_{-190}^{+230}~({630}_{-150}^{+220})$, respectively. We also investigate the possibility of GW190814s secondary component $m_2$ of mass $2.59_{-0.09}^{+0.08},M_{odot}$ being an SQS, and find that it could be a CFL SQS with the pairing gap $Delta$ larger than $244~rm MeV$ and the effective bag parameter $B_{rm eff}^{1/4}$ in the range of $170$ to $192$ MeV, at a $90%$ confidence level.
We put constraints on the secondary component of GW190814 by analyzing the observational data of the event. The relativistic mean-field models are used to calculate the mass-radius profile and tidal deformability of the compact object, considering it as a massive neutron star with the presence of dark matter particles inside it. With the increase of dark matter percentage, the maximum mass, radius, and tidal deformability of the neutron star decreases. We observe that the predicted properties are well consistent with GW190814 observational data, suggesting the possibility of a dark matter admixed neutron star if the underlying nuclear equation of state is sufficiently stiff.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا